【題目】堅持農(nóng)業(yè)農(nóng)村優(yōu)先發(fā)展,按照產(chǎn)業(yè)興旺、生態(tài)宜居的總要求,統(tǒng)籌推進農(nóng)村經(jīng)濟建設.洛寧縣某村出售特色水果(蘋果).規(guī)定如下:

品種

購買數(shù)量低于50

購買數(shù)量不低于50

新紅星

原價銷售

以八折銷售

紅富士

原價銷售

以九折銷售

如果購買新紅星40箱,紅富士60箱,需付款4300元;如果購買新紅星100箱,紅富士35箱,需付款4950.

1)每箱新紅星、紅富士的單價各多少元?

2)某單位需要購置這兩種蘋果120箱,其中紅富士的數(shù)量不少于新紅星的一半,并且不超過60箱,如何購買付款最少?請說明理由.

【答案】1)每箱新紅星40元,紅富士50元;(2)購買新紅星70箱,紅富士50箱總費用最少,為4490.

【解析】

1)根據(jù)題意結(jié)合表格中數(shù)據(jù),列出方程組求解即可;
2)利用已知得出x的取值范圍,再利用一次函數(shù)增減性得出答案.

解:(1)設每箱新紅星單價元,紅富士單價元,

由題意得:,

解得

答:每箱新紅星40元,紅富士50元;

2)設買新紅星箱,總費用為

由題意得:

解得:,

,

∴在的范圍內(nèi),當x=70時,,

的范圍內(nèi),當x=80時,,

∴當時,即購買新紅星70箱,紅富士50箱總費用最少,為4490.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,DBC邊上的一點,EAD的中點,過ABC的平行線交CE的延長線與F,且AF=BD,連接BF

1)求證:DBC的中點;

2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,OAB的邊OBx軸上,過點A的反比例函數(shù)y的圖象交AB于點C,且ACCB21,SOAC,則k的值為( 。

A.B.C.2D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為5的正方形中,以B為圓心,BA為半徑作弧AC,F為弧AC上一動點,過點F作⊙B的切線交AD于點P,交DC于點Q

1)求證:PQAP+CQ;

2)分別延長PQ、BC,延長線相交于點M,如果AP2,求BM的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線在坐標系中的位置如圖所示,它與,軸的交點分別為,是其對稱軸上的動點,根據(jù)圖中提供的信息,給出以下結(jié)論:①,②的一個根,③若,則.其中正確的有______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,EAB的中點.

1)將線段AB繞點O逆時針旋轉(zhuǎn)一定角度,使點A與點B重合,點B與點C重合,用無刻度直尺作出點O的位置,保留作圖痕跡;

2)將ABD繞點D逆時針旋轉(zhuǎn)某個角度,得到CFD,使DADC重合,用無刻度直尺作出CFD,保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊的邊軸交于點,點是反比例函數(shù)圖像上的一點,且,則等邊的邊長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,過原點的拋物線與軸交于另一點,拋物線頂點的坐標為,其對稱軸交軸于點.

1)求拋物線的解析式;

2)如圖2,點為拋物線上位于第一象限內(nèi)且在對稱軸右側(cè)的一個動點,求使面積最大時點的坐標;

3)在對稱軸上是否存在點,使得點關于直線的對稱點滿足以點、、為頂點的四邊形為菱形.若存在,請求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】合與實踐﹣﹣探究圖形中角之間的等量關系及相關問題.

問題情境:

正方形ABCD中,點P是射線DB上的一個動點,過點CCEAP于點E,點Q與點P關于點E對稱,連接CQ,設∠DAPα(0°<α135°),∠QCEβ

初步探究:

(1)如圖1,為探究αβ的關系,勤思小組的同學畫出了0°<α45°時的情形,射線AP與邊CD交于點F.他們得出此時αβ的關系是β.借助這一結(jié)論可得當點Q恰好落在線段BC的延長線上(如圖2)時,α   °,β   °;

深入探究:

(2)敏學小組的同學畫出45°<α90°時的圖形如圖3,射線AP與邊BC交于點G.請猜想此時αβ之間的等量關系,并證明結(jié)論;

拓展延伸:

(3)請你借助圖4進一步探究:90°<α135°時,αβ之間的等量關系為   ;

已知正方形邊長為2,在點P運動過程中,當αβ時,PQ的長為   

查看答案和解析>>

同步練習冊答案