如圖,已知⊙O1與⊙O2相交于A、B,點O1在⊙O2上,AC是⊙O1的直徑,直線CB與⊙O2相交于點D,連AD.
(1)求證:AD是⊙O2的直徑;
(2)求證:DA=DC.
分析:(1)首先連接AB,由AC是⊙O1的直徑,根據(jù)直徑所對的圓周角是直角,可得∠ABC=90°,又由90°的圓周角所對的弦是直徑,即可證得AD是⊙O2的直徑;
(2)連接O1D,由AD是⊙O2的直徑,可得∠AO1D=90°,又由O1A=O1B,即可證得結(jié)論.
解答:證明:(1)連接AB,
∵AC是⊙O1的直徑,
∴∠ABC=90°,
∴∠ABD=90°,
∴AD是⊙O2的直徑;

(2)連接O1D,
∵AD是⊙O2的直徑,
∴∠AO1D=90°,
即O1D⊥AC,
∵O1A=O1C,
∴DA=DC.
點評:此題考查了圓周角定理以及線段垂直平分線的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

24、如圖,已知⊙O1與⊙O2相交于A、B兩點,連心線O1O2交⊙O1于C、D兩點,直線CA交⊙O2于點P,直線PD交⊙O1于點Q,且CP∥QB,求證:AC=AP.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1與⊙O2是等圓,直線CF順次交兩圓于C、D、E、F,且CF交O1O2于點M.需要添加上一個條件,(只填寫一個條件,不添加輔精英家教網(wǎng)助線或另添字母),則M是線段O1O2的中點,并說明理由.(說明理由時可添加輔助線或字母)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1與⊙O2相交于A、B兩點,過A作⊙O1的切線交⊙O2于E,連接EB并延長交⊙O1于C,直線CA交⊙O2于點D.
(1)當A、D不重合時,求證:AE=DE
(2)當D與A重合時,且BC=2,CE=8,求⊙O1的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1與⊙O2相交于點A、B,AB=8,O1O2=1,⊙O1的半徑長為5,那么⊙O2的半徑長為
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經(jīng)過⊙O1的圓心O1,且兩圓相交于A,B兩點,C為⊙O2上的點,連接AC交⊙O1于D點,再連接BC,BD,AO1,AO2,O1O2,有如下四個結(jié)論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結(jié)論的序號為
 

查看答案和解析>>

同步練習冊答案