【題目】若ab>0,則函數(shù)y=ax+b與y= (a≠0)在同一直角坐標系中的圖象可能是( )
A.
B.
C.
D.

【答案】C
【解析】解:A. 函數(shù)y=ax+b的圖象不經過第二象限可得a>0,b<0,則函數(shù)y= 的圖象應在第二象限和第四象限,故不符合;
B. 函數(shù)y=ax+b的圖象只經過第二、四象限可得a<0,b=0,則函數(shù)y= 的圖象不存在,故不符合;
C.函數(shù)y=ax+b的圖象不經過第四象限可得k>0,b>0,則函數(shù)y= 的圖象應在第一象限和第二象限,故符合;
D. 函數(shù)y=ax+b的圖象不經過第三象限可得k<0,b>0,則函數(shù)y= 的圖象應在第一象限和第三象限,故不符合;
故選:C.
【考點精析】關于本題考查的一次函數(shù)的圖象和性質和反比例函數(shù)的圖象,需要了解一次函數(shù)是直線,圖像經過仨象限;正比例函數(shù)更簡單,經過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠;反比例函數(shù)的圖像屬于雙曲線.反比例函數(shù)的圖象既是軸對稱圖形又是中心對稱圖形.有兩條對稱軸:直線y=x和 y=-x.對稱中心是:原點才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(4m+1)x+2m﹣1=0;
(1)求證:不論m 任何實數(shù),方程總有兩個不相等的實數(shù)根;
(2)若方程的兩根為x1、x2且滿足 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明想測量一棵樹的高度,他發(fā)現(xiàn)樹的影子恰好落在地面和一斜坡上,如圖,此時測得地面上的影長為8米,坡面上的影長為4米.已知斜坡的坡角為30°,同一時刻,一根長為1米且垂直于地面放置的標桿在地面上的影長為2米,則樹的高度為(
A.(6+ )米
B.12米
C.(4﹣2 )米
D.10米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+ +c經過原點O和A(4,2),與x軸交于點C,點M、N同時從原點O出發(fā),點M以2個單位/秒的速度沿y軸正方向運動,點N以1個單位/秒的速度沿x軸正方向運動,當其中一個點停止運動時,另一點也隨之停止.

(1)求拋物線的解析式和點C的坐標;
(2)在點M、N運動過程中,
①若線段MN與OA交于點G,試判斷MN與OA的位置關系,并說明理由;
②若線段MN與拋物線相交于點P,探索:是否存在某一時刻t,使得以O、P、A、C為頂點的四邊形是等腰梯形?若存在,請求出t值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知矩形ABCD的對角線相交于點O,M、N分別是OD、OC上異于O、C、D的點.
(1)請你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個添加條件(或添加一個你認為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是
(2)添加條件后,請證明四邊形ABNM是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年9月23日強臺風“天兔”登錄深圳,伴隨著就是狂風暴雨梧桐山山坡上有一棵與水平面垂直的大樹,臺風過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示).已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=3m.

(1)求∠DAC的度數(shù);
(2)求這棵大樹折斷前的高度?(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在ABCD中,對角線AC與BD相交于點O,過點O作一條直線分別交AB,CD于點E,F(xiàn).

(1)求證:OE=OF;
(2)若AB=6,BC=5,OE=2,求四邊形BCFE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景
如圖1,在正方形ABCD的內部,作∠DAE=∠ABF=∠BCG=∠CDH,根據三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。

(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關系,設 , , ,請?zhí)剿? , 滿足的等量關系。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y=﹣x+1與反比例函數(shù) ,x與y的對應值如下表:

x

﹣3

﹣2

﹣1

1

2

3

y=﹣x+1

4

3

2

0

﹣1

﹣2

1

2

﹣2

﹣1

不等式﹣x+1>﹣ 的解為

查看答案和解析>>

同步練習冊答案