【題目】小強(qiáng)在學(xué)校組織的社會(huì)調(diào)查活動(dòng)中負(fù)責(zé)了解他所居住的小區(qū) 450戶居民的家庭收入情況.他從中隨機(jī)調(diào)查了 40 戶居民家庭人均收入情況(收入取整數(shù),單位:元), 并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖.

根據(jù)以上提供的信息,解答下列問(wèn)題:

(1)補(bǔ)全頻數(shù)分布表;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)請(qǐng)你估計(jì)該居民小區(qū)家庭屬于中等收入(人均不低于 1000 元但不足 1600 )的大約 有多少戶?

【答案】118;37.5%;5%;(2)見(jiàn)解析;(3338人;

【解析】

1)根據(jù)總戶數(shù)和各段得得百分比求出頻數(shù),再根據(jù)頻數(shù)與總數(shù)之間的關(guān)系求出百分比,從而把表補(bǔ)充完整;

2)根據(jù)(1)所得出的得數(shù)從而補(bǔ)全頻數(shù)分布直方圖;

3)根據(jù)圖表求出大于1000而不足1600的所占的百分比,再與總數(shù)相乘,即可得出答案.

(1)根據(jù)題意可得:

40×45%=18,

40(2+6+18+9+2)=3

3÷40=7.5%,

2÷40=5%

(2)根據(jù)(1)所得的數(shù)據(jù),補(bǔ)全頻數(shù)分布直方圖如下:

3)收入大于1000而不足1600的占(45%+22.5%+7.5%)=75%,

450×0.75=337.5338(),

答:該居民小區(qū)家庭屬于中等收入(大于1000不足1600)的大約有338戶。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知∠ABC= ,D是直線AB上的一點(diǎn),AD=BC,連結(jié)DC.以DC為邊,在∠CDB的同側(cè)作∠CDE,使得∠CDE=∠ABC,并截取DE=CD,連結(jié)AE.

(1)求證:;并判斷AEBC的位置關(guān)系,說(shuō)明理由;

(2)若將題目中的條件“∠ABC=900”改成“∠ABC=x0(0<x<180)”,

①結(jié)論“”還成立嗎?請(qǐng)說(shuō)明理由;②試探索:當(dāng)的值為多少時(shí),直線AEBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1的解析式為y=﹣x+2,l1x軸交于點(diǎn)B,直線l2經(jīng)過(guò)點(diǎn)D(0,5),與直線l1交于點(diǎn)C(﹣1,m),且與x軸交于點(diǎn)A,

(1)求點(diǎn)C的坐標(biāo)及直線l2的解析式;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:等腰直角三角形ABC位于第一象限,AB=AC=2,直角頂點(diǎn)A在直線y=x上,其中A點(diǎn)的橫坐標(biāo)為1,且兩條直角邊AB、AC分別平行于x軸、y軸,若雙曲線(k0)與有交點(diǎn),則k的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn) A(5,0)B(3,0)

(1)若點(diǎn) C y 軸上,且使得ABC 的面積等于 16,求點(diǎn) C 的坐標(biāo);

(2)若點(diǎn) C 在坐標(biāo)平面內(nèi),且使得ABC 的面積等于 16,這樣的點(diǎn) C 有多少個(gè)?你發(fā) 現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一塊木板如圖所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面積為( 。

A. 60 B. 30 C. 24 D. 12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四邊形ABCD中,ADBC,AD=24cm,BC=30cm,點(diǎn)P從A向點(diǎn)D以1cm/s的速度運(yùn)動(dòng),到點(diǎn)D即停止.點(diǎn)Q從點(diǎn)C向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),到點(diǎn)B即停止.直線PQ將四邊形ABCD截得兩個(gè)四邊形,分別為四邊形ABQP和四邊形PQCD,則當(dāng)P,Q兩點(diǎn)同時(shí)出發(fā),幾秒后所截得兩個(gè)四邊形中,其中一個(gè)四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,A=ABC=90°,AD=1,BC=3,E是邊CD的中點(diǎn),連接BE并延長(zhǎng)與AD的延長(zhǎng)線相交于點(diǎn)F.

(1)求證:四邊形BDFC是平行四邊形;

(2)若BCD是等腰三角形,求四邊形BDFC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑作⊙OAB于點(diǎn)D點(diǎn),連接CD

1)求證:∠A=∠BCD

2)若M為線段BC上一點(diǎn),試問(wèn)當(dāng)點(diǎn)M在什么位置時(shí),直線DM⊙O相切?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案