【題目】已知拋物線y1=ax2+2x+c與直線y2=kx+b交于點(diǎn)A(-1,0)、B(2,3).
(1)求a、b、c的值;
(2)直接寫出當(dāng)y1<y2時(shí),自變量的范圍是__________________________.
(3)若點(diǎn)C是拋物線的頂點(diǎn),求△ABC的面積.
【答案】
【解析】試題分析:(1)利用待定系數(shù)法即可求得;
(2)判斷拋物線的開口,根據(jù)交點(diǎn)坐標(biāo)即可求得;
(3)先利用配方法求出拋物線的頂點(diǎn)的坐標(biāo),設(shè)對稱軸與直線交于點(diǎn),求出 那么再根據(jù) 即可求解.
試題解析:(1)∵拋物線與直線交于點(diǎn)A(1,0)、B(2,3).
解得
∴a=1,b=1,c=3;
(2)
∴拋物線的開口向下,
∴x<1或x>2時(shí),拋物線上的部分在直線的下方,
∴當(dāng)y1<y2時(shí),自變量的范圍是x<1或x>2.
故答案為x<1或x>2;
(3)
∴拋物線的頂點(diǎn)C的坐標(biāo)為(1,4).
設(shè)對稱軸與直線交于點(diǎn)M,
∵當(dāng)x=1時(shí),y=1+1=2,
∴M(1,2),
∴CM=42=2,
∵A(1,0),B(2,3),
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=6厘米,AD=8厘米.延長BC到點(diǎn)E,使CE=3厘米,連接DE.動(dòng)點(diǎn)P從B點(diǎn)出發(fā),以2厘米/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),連接DP.設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答下列問題:
(1)當(dāng)t為何值時(shí),△PCD為等腰直角三角形?
(2)設(shè)△PCD的面積為S(平方厘米),試確定S與t的關(guān)系式;
(3)當(dāng)t為何值時(shí),△PCD的面積為長方形ABCD面積的?
(4)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以2厘米/秒的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動(dòng),是否存在某一時(shí)刻t,使△ABP和△DCE全等?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,垂足為,為直線上一動(dòng)點(diǎn)(不與點(diǎn)重合),在的右側(cè)作,使得,連接.
(1)求證:;
(2)當(dāng)在線段上時(shí)
① 求證:≌;
② 若, 則;
(3)當(dāng)CE∥AB時(shí),若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中是圓弧形拱橋,某天測得水面寬,此時(shí)圓弧最高點(diǎn)距水面.
()確定圓弧所在圓的圓心.(尺規(guī)作圖,保留作圖痕跡)
()求圓弧所在圓的半徑.
()水面上升,水面寬__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)為A(3,0),與y軸的交點(diǎn)為點(diǎn)B(0,3),其頂點(diǎn)為C,對稱軸為x=1,
(1)求拋物線的解析式;
(2)已知點(diǎn)M為y軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△ABM為等腰三角形時(shí),求點(diǎn)M的坐標(biāo);
(3)將△AOB沿x軸向右平移m個(gè)單位長度(0<m<3)得到另一個(gè)三角形,將所得的三角形與△ABC重疊部分的面積記為S,用m的代數(shù)式表示S,并求其最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D、E分別在錢段AB、AC上,CD與BE交于O,已知AB=AC,現(xiàn)添加以下的哪個(gè)條件仍不能判定△ABE≌△ACD
A. ∠B=∠CB. AD=AEC. BE=CDD. BD=CE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在一塊寬為12m,長為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2,求道路的寬;
(2)現(xiàn)在對該矩形區(qū)域進(jìn)行改造,如圖2,在正中央建一個(gè)與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長的.若道路與觀賞亭的面積之和是矩形面積的,求道路的寬.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B. C重合),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=∠BAC.設(shè)∠BAC=α,∠BCE=β.
(1)如圖1,如果∠BAC=90,∠BCE=___度;
(2)如圖2,你認(rèn)為α、β之間有怎樣的數(shù)量關(guān)系?并說明理由。
(3)當(dāng)點(diǎn)D在線段BC的延長線上移動(dòng)時(shí),α、β之間又有怎樣的數(shù)量關(guān)系?請?jiān)趥溆脠D上畫出圖形,并直接寫出你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com