【題目】觀察下圖,解答下列問(wèn)題.
(1)圖中的小圓圈被折線隔開(kāi)分成六層,第一層有1個(gè)小圓圈,第二層有3個(gè)圓圈,第三層有5個(gè)圓圈,…,第六層有11個(gè)圓圈.如果要你繼續(xù)畫(huà)下去,那么第八層有幾個(gè)小圓圈?第n層呢?
(2)某一層上有65個(gè)圓圈,這是第幾層?
(3)數(shù)圖中的圓圈個(gè)數(shù)可以有多種不同的方法.
比如:前兩層的圓圈個(gè)數(shù)和為(1+3)或22,
由此得,1+3=22.同樣,
由前三層的圓圈個(gè)數(shù)和得:1+3+5=32.
由前四層的圓圈個(gè)數(shù)和得:1+3+5+7=42.
由前五層的圓圈個(gè)數(shù)和得:1+3+5+7+9=52.…
根據(jù)上述請(qǐng)你計(jì)算:1+3+5+…+99的和
(4)猜測(cè):從1開(kāi)始的n個(gè)連續(xù)奇數(shù)之和是多少?用公式把它表示出來(lái).
【答案】(1)第八層有15個(gè)小圓圈,第n層有(2n﹣1)個(gè)小圓圈;(2)第33層;(3)2500;(4)1+3+5+…+(2n﹣1)=n2.
【解析】
(1)根據(jù)已知數(shù)據(jù)即可得出每一層小圓圈個(gè)數(shù)是連續(xù)的奇數(shù),進(jìn)而得出答案;
(2)利用(1)中發(fā)現(xiàn)的規(guī)律得出答案即可;
(3)利用(3)中發(fā)現(xiàn)的規(guī)律得出答案即可;
(4)利用已知數(shù)據(jù)得出答案即可.
解:(1)第八層有15個(gè)小圓圈,第n層有(2n﹣1)個(gè)小圓圈;
(2)令2n﹣1=65,
得,n=33.
所以,這是第33層;
(3)1+3+5+…+99=502=2500;
(4)1+3+5+…+(2n﹣1)=n2;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近幾年,隨著釣魚(yú)島事件、南海危機(jī)、薩德入韓等一系列事件的發(fā)生,我們國(guó)家安全一再受到威脅,所謂“國(guó)家興亡,匹夫有責(zé)”,某校積極開(kāi)展國(guó)防知識(shí)教育,九年級(jí)甲、乙兩班分別選5名同學(xué)參加“國(guó)防知識(shí)”比賽,其預(yù)賽成績(jī)?nèi)鐖D所示:
(1)根據(jù)上圖填寫(xiě)下表:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
甲班 |
| 8.5 |
|
|
乙班 | 8.5 |
| 10 | 1.6 |
(2)根據(jù)上表數(shù)據(jù),分別從平均數(shù)、中位數(shù)、眾數(shù)、方差的角度對(duì)甲乙兩班進(jìn)行分析.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽(yáng)市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬(wàn)件和12.1萬(wàn)件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長(zhǎng)率?
(2) 如果平均每人每月最多可投遞快遞0.6萬(wàn)件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成2017年6月份的快遞投遞任務(wù)?如果不能,請(qǐng)問(wèn)至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與一次函數(shù)y2=的圖象交于點(diǎn)A,B,點(diǎn)B的橫坐標(biāo)實(shí)數(shù)4,點(diǎn)P(1,m)在反比例函數(shù)y1=的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)觀察圖象回答:當(dāng)x為何范圍時(shí),y1>y2;
(3)求△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新規(guī)定這樣一種運(yùn)算法則:a△b=,如2△3=-2×3=4-6=-2;
利用運(yùn)算法則解決下列問(wèn)題:
(1)1△2= ,(-1)△[1△(-1)] = .
(2)若2△x=3,求x的值.
(3)若(-2)△x=-2+x,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,∠ABD=90°,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE.
(1)求證:四邊形BECD是矩形;
(2)連接DE交BC于點(diǎn)F,連接AF,若CE=2,∠DAB=30°,求AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問(wèn)題:如何使用尺規(guī)完成“過(guò)直線l外一點(diǎn)P作已知直線l的平行線”.
小明的作法如下:
①在直線l上取一點(diǎn)A,以點(diǎn)A為圓心,AP長(zhǎng)為半徑作弧,交直線l于點(diǎn)B;
②分別以P,B為圓心,以AP長(zhǎng)為半徑作弧,兩弧相交于點(diǎn)Q(與點(diǎn)A不重合);
③作直線PQ.所以直線PQ就是所求作的直線.根據(jù)小明的作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵AB=AP= = .
∴四邊形ABQP是菱形( )(填推理的依據(jù)).
∴PQ∥l.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù)m,n,p滿足m<n<p(mp<0)且|p|<|n|<|m|,則|x﹣m|+|x+n|+|x+p|的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2013年安慶市體育考試跳繩項(xiàng)目為學(xué)生選考項(xiàng)目,下表是某班模擬考試時(shí)10名同學(xué)的測(cè)試成績(jī)(單位:個(gè)/分鐘),則關(guān)于這10名同學(xué)每分鐘跳繩的測(cè)試成績(jī),下列說(shuō)法錯(cuò)誤的是( 。
成績(jī)(個(gè)/分鐘) | 140 | 160 | 169 | 170 | 177 | 180 |
人數(shù) | 1 | 1 | 1 | 2 | 3 | 2 |
A. 眾數(shù)是177 B. 平均數(shù)是170 C. 中位數(shù)是173.5 D. 方差是135
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com