【題目】兩條直線相交,只有1個交點,三條直線相交,最多有3個交點,四條直線相交,最多有6個交點,10條直線相交,最多有( 。﹤交點.

A. 45 B. 42 C. 40 D. 36

【答案】A

【解析】

根據(jù)三條直線交點最多為1+2=3,四條直線交點最多為3+3=1+2+3=6,五條直線交點最多為6+4=1+2+3+4=10,六條直線交點最多為10+5=1+2+3+4+5=15然后得出規(guī)律,列式計算即可得解

兩條直線相交,只有1個交點,三條直線交點最多為1+2=3,四條直線交點最多為3+3=1+2+3=6五條直線交點最多為6+4=1+2+3+4=10,六條直線交點最多為10+5=1+2+3+4+5=15;

10條直線交點最多為1+2+3++101)==45

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠AOD,OC平分∠BOD

(1)若∠AOB=90°,求∠EOC的度數(shù);

(2)若∠AOB,求∠EOC的度數(shù);

(3)如果將題中平分的條件改為∠EOA=AOD,DOC=DOBAOD=50°,且∠AOB=90°,求∠EOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點D、E,過點D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求DF的長;
(3)寫出求圖中陰影部分的面積的思路.(不求計算結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將等腰△ABC繞頂點B逆時針方向旋轉(zhuǎn)α度到△A1B1C1的位置,ABA1C1相交于點D,ACA1C1、BC1分別交于點E. F.

(1)求證:△BCF≌△BA1D.

(2)當∠C=α度時,判定四邊形A1BCE的形狀并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,各正方形的邊長均為1,則四個陰影三角形中,一定相似的一對是(
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列4個結(jié)論中結(jié)論正確的有
①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動,將三角板MON 繞點O 以每秒8°的速度順時針方向旋轉(zhuǎn)t 秒.

(1)如圖2,當t=   秒時,OM 平分∠AOC,此時∠NOC﹣∠AOM= ;

(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關(guān)系?并說明理由(數(shù)量關(guān)系中不能含t);

(3)直線AD 的位置不變,若在三角板MON 開始順時針旋轉(zhuǎn)的同時,另一個三角板OBC也繞點O 以每秒2°的速度順時針旋轉(zhuǎn),當OM 旋轉(zhuǎn)至射線OD 上時,兩個三角板同時停止運動.

①當t= 秒時,∠MOC=15°;

②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關(guān)系(數(shù)量關(guān)系中不能含t).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,某校號召全體師生積極捐書,為了解所捐書籍的種類,圖書管理員對部分書籍進行了抽樣調(diào)查,根據(jù)調(diào)查數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表所提供的信息回答下面問題:

某校師生捐書種類情況統(tǒng)計表

種類

頻數(shù)

百分比

A.科普類

12

n

B.文學(xué)類

14

35%

C.藝術(shù)類

m

20%

D.其它類

6

15%

(1)統(tǒng)計表中的m= ,n=

(2)補全條形統(tǒng)計圖;

(3)本次活動師生共捐書2000本,請估計有多少本科普類圖書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)“低碳生活”的號召,李明決定每天騎自行車上學(xué),有一天李明騎了1000米后,自行車發(fā)生了故障,修車耽誤了5分鐘,車修好后李明繼續(xù)騎行,用了8分鐘騎行了剩余的800米,到達學(xué)校(假設(shè)在騎車過程中勻速行駛).若設(shè)他從家開始去學(xué)校的時間為t(分鐘),離家的路程為y(千米),則y與t(15<t≤23)的函數(shù)關(guān)系為________

查看答案和解析>>

同步練習(xí)冊答案