已知:如圖 △ABC中,AD=AE點(diǎn)D,E在BC上, BD=CE. 求證:AB=AC.

 

【答案】

提示,證△ABD≌△FCE

【解析】由AD=AE得∠ADE=∠AED,所以∠ADB=∠AEC,再有BD=CE,根據(jù)SAS即可得到△ABD≌△ACE,從而得到AB=AC.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點(diǎn)的切線與OC的延長線交于點(diǎn)D,∠B=30°,OH=2
3
.請求出:
(1)∠AOC的度數(shù);
(2)線段AD的長(結(jié)果保留根號);
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖△ABC中,AF:FC=1:2,且BD=DF,那么BE:EC等于( 。
A、1:4B、1:3C、2:5D、2:3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖△ABC中,∠C=90°,AD平分∠BAC,CD=
3
,BD=2
3
,求平分線AD的長,AB,AC的長,外接圓的面積,內(nèi)切圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖△ABC中,∠A=90°,AB=AC,D是斜邊BC的中點(diǎn),E,F(xiàn)分別在線段AB,AC上,且∠EDF=90°
(1)求證:△DEF為等腰直角三角形;
(2)求證:S四邊形AEDF=S△BDE+S△CDF;
(3)如果點(diǎn)E運(yùn)動(dòng)到AB的延長線上,F(xiàn)在射線CA上且保持∠EDF=90°,△DEF還仍然是等腰直角三角形嗎?請畫圖說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖△ABC中,AB=AC,CD⊥AD于D,CD=
12
BC,D在△ABC外,求證:∠ACD=∠B.

查看答案和解析>>

同步練習(xí)冊答案