【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交AB于D,延長AO交O于E,連接CD,CE,若CE是⊙O的切線,解答下列問題:
(1)求證:CD是⊙O的切線;
(2)若BC=4,CD=6,求平行四邊形OABC的面積.
【答案】(1)證明見解析(2)24
【解析】試題分析:(1)連接OD,求出∠EOC=∠DOC,根據(jù)SAS推出△EOC≌△DOC,推出∠ODC=∠OEC=90°,根據(jù)切線的判定推出即可;
(2)根據(jù)切線長定理求出CE=CD=4,根據(jù)平行四邊形性質(zhì)求出OA=OD=4,根據(jù)平行四邊形的面積公式=2△COD的面積即可求解.
試題解析:(1)證明:連接OD,
∵OD=OA,
∴∠ODA=∠A,
∵四邊形OABC是平行四邊形,
∴OC∥AB,
∴∠EOC=∠A,∠COD=∠ODA,
∴∠EOC=∠DOC,
在△EOC和△DOC中,
∴△EOC≌△DOC(SAS),
∴∠ODC=∠OEC=90°,
即OD⊥DC,
∴CD是⊙O的切線;
(2)由(1)知CD是圓O的切線,
∴△CDO為直角三角形,
∵S△CDO=CDOD,
又∵OA=BC=OD=4,
∴S△CDO=×6×4=12,
∴平行四邊形OABC的面積S=2S△CDO=24.
科目:初中數(shù)學 來源: 題型:
【題目】已知
(1)分別寫出a,b,c表示的數(shù),并計算(a+b)+(b+c)+(c+a)的值;
(2)設a,b,c在數(shù)軸上對應的點分別是點A,點B,點 C.若點M是線段AB上的一點,比較與MC的大小,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt △ ABC 中,∠ ACB = 90 °,過點 C 的直線 MN ∥ AB , D 為 AB 邊上一點,過點 D 作 DE ⊥ BC ,交直線 MN 于 E ,垂足為 F ,連接 CD 、 BE .(1)求證: CE = AD ;(2)當 D 在 AB 中點時,四邊形 BECD 是什么特殊四邊形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( )
A. ∠ABC=∠ADC,∠BAD=∠BCDB. AB=BC
C. AB=CD,AD=BCD. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形網(wǎng)格中建立如圖所示的平面直角坐標系xOy.△ABC的三個頂點都在格點上,點A的坐標是(4,4),請解答下列問題:
(1)將△ABC向下平移5個單位長度,畫出平移后的A1B1C1,并寫出點A的對應點A1的坐標;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2;
(3)將△ABC繞點C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A3B3C.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,△ABC中,,AB的垂直平分線交AC于點D,連接BD.若AC=2,BC=1,則△BCD的周長為 ;
(2)O為正方形ABCD的中心,E為CD邊上一點,F為AD邊上一點,且△EDF的周長等于AD的長.
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
②在圖3中補全圖形,求的度數(shù);
③若,則的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會文藝部換屆選舉,經(jīng)初選、復選后,共有 甲、乙、丙三人進入最后的競選.最后決定利用投票方式對三人進行選舉,共發(fā)出1800張選票,得票數(shù)最高者為當選人,且廢票不計入任何一位候選人的得票數(shù)內(nèi),全校設有四個投票箱,目前第一、第二、第三投票箱已開完所有選票,剩下第四投票箱尚未開箱,結(jié)果如表所示(單位:票) 下列判斷正確的是( )
A. 甲可能當選 B. 乙可能當選 C. 丙一定當選 D. 甲、乙、丙三人都可能當選
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某種計時“香篆”在0:00時刻點燃,若“香篆”剩余的長度h(cm)與燃燒的時間x(h)之間是一次函數(shù)關(guān)系,h與x的一組對應數(shù)值如表所示:
燃燒的時間x(h) | … | 3 | 4 | 5 | 6 | … |
剩余的長度h(cm) | … | 210 | 200 | 190 | 180 | … |
(1)寫出“香篆”在0:00時刻點然后,其剩余的長度h(cm)與燃燒時間x(h)的函數(shù)關(guān)系式,并解釋函數(shù)表達式中x的系數(shù)及常數(shù)項的實際意義;
(2)通過計算說明當“香篆”剩余的長度為125cm時的時刻.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在,,,垂足為,點是邊上的一個動點,連接,過點作,交的延長線于點,連接交于點.
(1)請根據(jù)題意補全示意圖;
(2)當與全等時,
①若,,,求的度數(shù);
②試探究,,之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com