【題目】閱讀后,請解答.
已知,符合表示大于或等于的最小正整數(shù),如,,,….
⑴填空:________,________,若,則的取值范圍是________.
⑵某市的出租車收費標(biāo)準(zhǔn)規(guī)定如下:以內(nèi)(包括)收費元,超過的每超過,加收元(不足的按計算).用表示所行的千米數(shù),表示行應(yīng)付車費,則乘車費可按如下的公式計算:當(dāng)<≤(單位:)時,(元);當(dāng)(單位:)時,(元).某乘客乘車后付費元,該乘客所行的路程的取值范圍是________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】服裝店10月份以每套500元的進(jìn)價購進(jìn)一批羽絨服,當(dāng)月以標(biāo)價銷售,銷售額14000元,進(jìn)入11月份搞促銷活動,每件降價50元,這樣銷售額比10月份增加了5500元,售出的件數(shù)是10月份的1.5倍.
(1)求每件羽絨服的標(biāo)價是多少元;
(2)進(jìn)入12月份,該服裝店決定把剩余的羽絨服按10月份標(biāo)價的八折銷售,結(jié)果全部賣掉,而且這批羽絨服總獲利不少于12700元,問這批羽絨服至少購進(jìn)多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象開口向上,且經(jīng)過點A(0,).
(1)若此函數(shù)的圖象經(jīng)過點(1,0)、(3,0),求此函數(shù)的表達(dá)式;
(2)若此函數(shù)的圖象經(jīng)過點B(2,﹣),且與x軸交于點C、D.
①填空:b=_____(用含α的代數(shù)式表示);
②當(dāng)CD2的值最小時,求此函數(shù)的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(9,0),以AB為直徑作⊙O′,交y軸的負(fù)半軸于點C,連接AC,BC,過A,B,C三點作拋物線.
(1)求拋物線的解析式;
(2)點E是AC延長線上一點,∠BCE的平分線CD交⊙O′于點D,連接BD,求直線BD的解析式;
(3)在(2)的條件下,拋物線上是否存在點P,使得∠PDB=∠CBD?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.
第三問改成,在(2)的條件下,點P是直線BC下方的拋物線上一動點,當(dāng)點P運動到什么位置時,△PCD的面積是△BCD面積的三分之一,求此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)玩“托球賽跑”游戲,商定:用球拍托著乒乓球從起跑線起跑,繞過點跑回到起跑線(如圖所示);途中乒乓球掉下時須撿起并回到掉球處繼續(xù)賽跑,用時少者勝.結(jié)果甲同學(xué)由于心急掉了球,浪費了6秒鐘,乙同學(xué)則順利跑完.事后,甲同學(xué)說我倆所用的全部時間的和為50秒”,乙同學(xué)說撿球過程不算在內(nèi)時,甲的速度是我的1.2倍.”根據(jù)圖文信息,請問甲同學(xué)的速度是______米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,⊙O的直徑AB=12,P是弦BC上一動點(與點B,C不重合),∠ABC=30°,過點P作PD⊥OP交⊙O于點D.
(1)如圖2,當(dāng)PD∥AB時,求PD的長;
(2)如圖3,當(dāng)時,延長AB至點E,使BE=AB,連接DE.
①求證:DE是⊙O的切線;
②求PC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以∠AOB的頂點O為端點引射線OP,使∠AOP:∠BOP=3:2,若∠AOB=20°,則∠AOP的度數(shù)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天,一蔬菜經(jīng)營戶用90元錢按批發(fā)價從蔬菜批發(fā)市場買了西紅柿和豆角共50kg,然后在市場上按零售價出售,西紅柿和豆角當(dāng)天的批發(fā)價和零售價如下表所示:
品名 | 西紅柿 | 豆角 |
批發(fā)價(單位:元/kg) | 2.0 | 1.5 |
零售價(單位:元/kg) | 2.9 | 2.6 |
如果西紅柿和豆角全部以零售價售出,他當(dāng)天賣這些西紅柿和豆角賺了多少元錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的對角線AC、BD交于點O,點E、F分別在OC、OB上,且OE=OF.
(1)如圖1,若點E、F在線段OC、OB上,連接AF并延長交BE于點M,求證:AM⊥BE;
(2)如圖2,若點E、F在線段OC、OB的延長線上,連接EB并延長交AF于點M.
①∠AME的度數(shù)為 ;
②若正方形ABCD的邊長為3,且OC=3CE時,求BM的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com