【題目】如圖,BD是正方形ABCD的對角線,BC=4,邊BC在其所在的直線上平移,平移后得到的線段記為PQ,連接PA、QD,并過點Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請直接寫出線段BC在平移過程中,四邊形APQD是什么四邊形?
(2)請判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并利用圖1加以證明.
(3)在平移變換過程中,設(shè)y=S△OPB,BP=x(0≤x≤4),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.
【答案】(1)平行四邊形(2)OA=OP,OA⊥OP,理由見解析(3)當(dāng)P點在B點右側(cè)時,y=(x+2)21;當(dāng)P點在B點左側(cè)時,y=(x2)2+1;當(dāng)x=4時,y有最大值為8.
【解析】
(1)根據(jù)平移的性質(zhì),可得PQ,根據(jù)一組對邊平行且相等的四邊形是平行四邊形,可得答案;
(2)根據(jù)正方形的性質(zhì),平移的性質(zhì),可得PQ與AB的關(guān)系,根據(jù)等腰直角三角形的判定與性質(zhì),可得∠PQO,根據(jù)全等三角形的判定與性質(zhì),可得AO與OP的數(shù)量關(guān)系,根據(jù)余角的性質(zhì),可得AO與OP的位置關(guān)系;
(3)根據(jù)等腰直角三角形的性質(zhì),可得OE的長,根據(jù)三角形的面積公式,可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得到答案.
(1)四邊形APQD為平行四邊形,
理由如下:
∵四邊形ABCD是正方形,
∴ADBC,
∵邊BC在其所在的直線上平移,平移后得到的線段記為PQ,
∴
∴四邊形APQD為平行四邊形;
(2)OA=OP,OA⊥OP,理由如下:
∵四邊形ABCD是正方形,
∴AB=BC=PQ,∠ABO=∠OBQ=45°,
∵OQ⊥BD,
∴∠PQO=45°,
∴∠ABO=∠OBQ=∠PQO=45°,
∴OB=OQ,
在△AOB和△OPQ中,
∴△AOB≌△POQ(SAS),
∴OA=OP,∠AOB=∠POQ,
∴∠AOP=∠BOQ=90°,
∴OA⊥OP;
(3)如圖,過O作OE⊥BC于E.
①如圖1,當(dāng)P點在B點右側(cè)時,
則BQ=x+4,OE=,
∴y=×x,即y=(x+2)21,
又∵0≤x≤4,
∴當(dāng)x=4時,y有最大值為8;
②如圖2,當(dāng)P點在B點左側(cè)時,
則BQ=4x,OE=,
∴y=×x,即y=(x2)2+1,
又∵0≤x≤4,
∴當(dāng)x=2時,y有最大值為1;
綜上所述,∴當(dāng)x=4時,y有最大值為8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“中國海監(jiān)50”正在南海海域A處巡邏,島礁B上的中國海軍發(fā)現(xiàn)點A在點B的正西方向上,島礁C上的中國海軍發(fā)現(xiàn)點A在點C的南偏東30°方向上,已知點C在點B的北偏西60°方向上,且B、C兩地相距120海里.
(1)求出此時點A到島礁C的距離;
(2)若“中海監(jiān)50”從A處沿AC方向向島礁C駛?cè),?dāng)?shù)竭_(dá)點A′時,測得點B在A′的南偏東75°的方向上,求此時“中國海監(jiān)50”的航行距離.(注:結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).
(1)求出拋物線的解析式;
(2)如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;
(3)點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,根據(jù)測試成績(成績都不低于50分)繪制出如圖所示的部分頻數(shù)分布直方圖.
請根據(jù)圖中信息完成下列各題.
(1)將頻數(shù)分布直方圖補充完整人數(shù);
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少;
(3)現(xiàn)將從包括小明和小強在內(nèi)的4名成績優(yōu)異的同學(xué)中隨機選取兩名參加市級比賽,求小明與小強同時被選中的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1,圖2是兩張形狀、大小完全相同的方格紙,方格紙中的每個小正方形的邊長均為1,線段AB的兩個端點均在小正方形的頂點上.
(1)在圖1中畫出以AB為底邊的等腰直角三角形ABC,點C在小正方形的頂點上;
(2)在圖2中畫出以AB為腰的等腰三角形ABD,點D在小正方形的頂點上,且△ABD的面積為8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,,點G在邊上,連接,作于點E,于點F,連接、,設(shè),,.
(1)求證:;
(2)求證:;
(3)若點G從點B沿邊運動至點C停止,求點E,F所經(jīng)過的路徑與邊圍成的圖形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,將繞點C順時針旋轉(zhuǎn)得到,點D落在線段AB上,連接BE.
(1)求證:DC平分;
(2)試判斷BE與AB的位置關(guān)系,并說明理由:
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】成都“339”電視塔作為成都市地標(biāo)性建筑之一,現(xiàn)已成為外地游客到成都旅游打卡的網(wǎng)紅地.如圖,為測量電視塔觀景臺處的高度,某數(shù)學(xué)興趣小組在電視塔附近一建筑物樓頂處測得塔處的仰角為45°,塔底部處的俯角為22°.已知建筑物的高約為61米,請計算觀景臺的高的值.
(結(jié)果精確到1米;參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小瑩在數(shù)學(xué)綜合實踐活動中,利用所學(xué)的數(shù)學(xué)知識對某小區(qū)居民樓AB的高度進行測量.先測得居民樓AB與CD之間的距離AC為35m,后站在M點處測得居民樓CD的頂端D的仰角為45°.居民樓AB的頂端B的仰角為55°.已知居民樓CD的高度為16.6m,小瑩的觀測點N距地面1.6m.求居民樓AB的高度(精確到1m).(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com