“不在同一直線上的三點(diǎn)確定一個(gè)圓”。請你判斷平面直角坐標(biāo)系內(nèi)的三個(gè)點(diǎn),, 是否可以確定一個(gè)圓。請寫出你的推理過程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,⊙P內(nèi)含于⊙O,⊙O的弦AB切⊙P于點(diǎn)C,且AB∥OP.若陰影部分的面積為10π,則弦AB的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小明在打網(wǎng)球時(shí),使球恰好能打過網(wǎng),而且落點(diǎn)恰好在離網(wǎng)6米的位置上,則球
拍擊球的高度h為_____________米。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
閱讀以下的材料:
如果兩個(gè)正數(shù),即,有下面的不等式:
當(dāng)且僅當(dāng)時(shí)取到等號
我們把叫做正數(shù)的算術(shù)平均數(shù),把叫做正數(shù)的幾何平均數(shù),于是上述不等式可表述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于(即大于或等于)它們的幾何平均數(shù)。它在數(shù)學(xué)中有廣泛的應(yīng)用,是解決最值問題的有力工具。下面舉一例子:
例:已知,求函數(shù)的最小值。
解:令,則有,得,當(dāng)且僅當(dāng)時(shí),即時(shí),函數(shù)有最小值,最小值為。
根據(jù)上面回答下列問題
① 已知,則當(dāng) 時(shí),函數(shù)取到最小值,最小值
為 ;
② 用籬笆圍一個(gè)面積為的矩形花園,問這個(gè)矩形的長、寬各為多少時(shí),所
用的籬笆最短,最短的籬笆周長是多少;
③. 已知,則自變量取何值時(shí),函數(shù)取到最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
)如圖5312,扇形AOB的半徑為1,∠AOB=90°,以AB為直徑畫半圓,則圖中的陰影部分的面積為( )
A.π B.π- C. D.π+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖5215,PA,PB是⊙O的切線,切點(diǎn)分別為A,B兩點(diǎn),點(diǎn)C在⊙O上,如果∠ACB=70°,那么∠P的度數(shù)是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com