【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,AD=5,BC=9,以A為中心將腰AB順時(shí)針旋轉(zhuǎn)90°至AE,連接DE,則△ADE的面積等于( )
A.10
B.11
C.12
D.13
【答案】A
【解析】解:過A作AN⊥BC于N,過E作EM⊥AD,交DA延長線于M,
∵AD∥BC,∠C=90°,
∴∠C=∠ADC=∠ANC=90°,
∴四邊形ANCD是矩形,
∴∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,
∴BN=9﹣5=4,
∵∠M=∠EAB=∠MAN=∠ANB=90°,
∴∠EAM+∠BAM=90°,∠MAB+∠NAB=90°,
∴∠EAM=∠NAB,
∵在△EAM和△BAN中, ,
∴△EAM≌△BAN(AAS),
∴EM=BN=4,
∴△ADE的面積是 ×AD×EM= ×5×4=10.
故選A.
過A作AN⊥BC于N,過E作EM⊥AD,交DA延長線于M,得出四邊形ANCD是矩形,推出∠DAN=90°=∠ANB=∠MAN,AD=NC=5,AN=CD,求出BN=4,求出∠EAM=∠NAB,證△EAM≌△BAN,求出EM=BN=4,根據(jù)三角形的面積公式求出即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀將其均勻分成四個(gè)小長方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)你認(rèn)為圖②中陰影部分的正方形的邊長等于________;
(2)請你用兩種不同的方法表示圖②中陰影部分的面積,方法一:__________________,方法二:________________;
(3)觀察圖②,你能寫出代數(shù)式(m+n)2,(m-n)2,mn之間的關(guān)系嗎?
(4)應(yīng)用:已知m+n=11,mn=28(m>n),求m,n的值.
① ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,B、C、E三點(diǎn)在同一條直線上,AC∥DE,AC=CE,∠ACD=∠B.
(1)求證:BC=DE
(2)若∠A=40°,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為 度;
(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說明理由;
(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等圓⊙O1和⊙O2相交于A、B兩點(diǎn),⊙O1經(jīng)過⊙O2的圓心,順次連接A、O1、B、O2 .
(1)求證:四邊形AO1BO2是菱形;
(2)過直徑AC的端點(diǎn)C作⊙O1的切線CE交AB的延長線于E,連接CO2交AE于D,求證:CE=2O2D;
(3)在(2)的條件下,若△AO2D的面積為1,求△BO2D的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】仔細(xì)閱讀下列材料.
“分?jǐn)?shù)均可化為有限小數(shù)或無限循環(huán)小數(shù)”,反之,“有限小數(shù)或無限小數(shù)均可化為分?jǐn)?shù)”.
例如:=1÷4=0.25;==8÷5=1.6;=1÷3=,反之,0.25== ;1.6===.那么,怎么化成分?jǐn)?shù)呢?
解:∵×10=3+, ∴不妨設(shè)=x,則上式變?yōu)?/span>10x=3+x,解得x=,即=;
∵=,設(shè)=x,則上式變?yōu)?/span>100x=2+x,解得x=,
∴==1+x=1+=
⑴將分?jǐn)?shù)化為小數(shù):=______,=_______;
⑵將小數(shù)化為分?jǐn)?shù):=______,=_______;
⑶將小數(shù)化為分?jǐn)?shù),需要寫出推理過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過10噸時(shí),超過的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià);
(2)設(shè)每月用水量為n噸,應(yīng)交水費(fèi)為m元,寫出m與n之間的函數(shù)解析式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】崇左市江州區(qū)太平鎮(zhèn)壺城社區(qū)調(diào)查居民雙休日的學(xué)習(xí)狀況,采取了下列調(diào)查方式;a:從崇左高中、太平鎮(zhèn)中、太平小學(xué)三所學(xué)校中選取200名教師;b:從不同住宅樓(即江灣花園與萬鵬住宅樓)中隨機(jī)選取200名居民;c:選取所管轄區(qū)內(nèi)學(xué)校的200名在校學(xué)生.并將最合理的調(diào)查方式得到的數(shù)據(jù)制成扇形統(tǒng)計(jì)圖和部分?jǐn)?shù)據(jù)的頻數(shù)分布直方圖.以下結(jié)論:①上述調(diào)查方式最合理的是b;②在這次調(diào)查的200名教師中,在家學(xué)習(xí)的有60人;③估計(jì)該社區(qū)2000名居民中雙休日學(xué)習(xí)時(shí)間不少于4小時(shí)的人數(shù)是1180人;④小明的叔叔住在該社區(qū),那么雙休日他去叔叔家時(shí),正好叔叔不學(xué)習(xí)的概率是0.1.其中正確的結(jié)論是( 。
A.①④
B.②④
C.①③④
D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)計(jì)算:
(2)先化簡,再求值:3a-2(a-ab)+(b-2ab),其中a,b滿足|2a+b|+(2-b) =0
(3)解方程: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com