【題目】如圖,已知菱形的邊軸上,點(diǎn)的坐標(biāo)為,點(diǎn)是對(duì)角線上的一個(gè)動(dòng)點(diǎn),點(diǎn)軸上,當(dāng)最短時(shí),點(diǎn)的坐標(biāo)為______.

【答案】,.

【解析】

如圖,連接AC,AD,分別交OBGP,作BKOAK.首先說(shuō)明點(diǎn)P就是所求的點(diǎn),再求出點(diǎn)B坐標(biāo),求出直線OBDA,列方程組即可解決問題.

如圖連接AC,AD,分別交OBG、P,作BKOAK

RtOBK中,OB===4,

∵四邊形OABC是菱形,

ACOB,GC=AGOG=BG=2,

設(shè)OA=AB=x,

RtABK中,

AB2=AK2+BK2,

x2=8-x2+42,

x=5

A5,0),

A、C關(guān)于直線OB對(duì)稱,

PC+PD=PA+PD=DA,

∴此時(shí)PC+PD最短,

∵直線OB解析式為y=x,直線AD解析式為y=-x+2,

解得,

∴點(diǎn)P坐標(biāo)(,),

故答案為:(,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移5個(gè)單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A.函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為點(diǎn)C,兩函數(shù)圖象分別交于B、D兩點(diǎn).

1)求函數(shù)y=ax2+bx+c的解析式;

2)如圖2,連接AD、CD、BCAB,判斷四邊形ABCD的形狀,并說(shuō)明理由.

3)如圖3,連接BD,點(diǎn)My軸上的動(dòng)點(diǎn),在平面內(nèi)是否存在一點(diǎn)N,使以B、DM、N為頂點(diǎn)的四邊形為矩形?若存在,請(qǐng)求出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O的直徑AB26,PAB(不與點(diǎn)A、B重合)的任一點(diǎn),點(diǎn)CDO上的兩點(diǎn),若∠APD=∠BPC,則稱∠CPD為直徑AB的“回旋角”.

(1)若∠BPC=∠DPC60°,則∠CPD是直徑AB的“回旋角”嗎?并說(shuō)明理由;

(2)的長(zhǎng)為π,求“回旋角”∠CPD的度數(shù);

(3)若直徑AB的“回旋角”為120°,且△PCD的周長(zhǎng)為24+13,直接寫出AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】6.26國(guó)際禁毒日到來(lái)之際,重慶市教委為了普及禁毒知識(shí),提高禁毒意識(shí),舉辦了關(guān)愛生命,拒絕毒品的知識(shí)競(jìng)賽.某校初一、初二年級(jí)分別有300人,現(xiàn)從中各隨機(jī)抽取20名同學(xué)的測(cè)試成績(jī)進(jìn)行調(diào)查分析,成績(jī)?nèi)缦拢?/span>

1)根據(jù)上述數(shù)據(jù),將下列表格補(bǔ)充完成.

(整理、描述數(shù)據(jù)):

分?jǐn)?shù)段

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

初一人數(shù)

2

_______

_______

12

初二人數(shù)

2

2

1

15

(分析數(shù)據(jù)):樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、滿分率如表:

年級(jí)

平均數(shù)

中位數(shù)

滿分率

初一

93

________

初二

________

(得出結(jié)論):

2)估計(jì)該校初一、初二年級(jí)學(xué)生在本次測(cè)試成績(jī)中可以得到滿分的人數(shù)共______人;

3)你認(rèn)為哪個(gè)年級(jí)掌握禁毒知識(shí)的總體水平較好,請(qǐng)從兩個(gè)方面說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究.已知當(dāng)自變量的值為時(shí),函數(shù)值都為;當(dāng)自變量的值為時(shí),函數(shù)值都為.探究過(guò)程如下,請(qǐng)補(bǔ)充完整.

1)這個(gè)函數(shù)的表達(dá)式為 ;

2)在給出的平面直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象并寫出這個(gè)函數(shù)的--條性質(zhì): ;

3)進(jìn)一步探究函數(shù)圖象并解決問題:

①直線與函數(shù)有三個(gè)交點(diǎn),則

②已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式的解集:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明對(duì)九(1)、九(2)班(人數(shù)都為50人)參加“陽(yáng)光體育”的情況進(jìn)行了調(diào)查,統(tǒng)計(jì)結(jié)果如圖所示.下列說(shuō)法中正確的是( )

A.喜歡乒乓球的人數(shù)(1)班比(2)班多B.喜歡足球的人數(shù)(1)班比(2)班多

C.喜歡羽毛球的人數(shù)(1)班比(2)班多D.喜歡籃球的人數(shù)(2)班比(1)班多

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k0)與軸交于點(diǎn)A(-2.0),與反比例函數(shù)y=(m0)的圖象交于點(diǎn)B(2,n),連接BO,若SAOB=4.

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式:

(2)若直線AB與y軸的交點(diǎn)為C.求△OCB的面積

(3)根據(jù)圖象,直接寫出當(dāng)x>0時(shí),不等式>kx+b的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,軸的正半軸,,分別與雙曲線相交于點(diǎn)和點(diǎn),且,若,則點(diǎn)的橫坐標(biāo)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測(cè)試,根據(jù)測(cè)試評(píng)分標(biāo)準(zhǔn),將他們的成績(jī)進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請(qǐng)結(jié)合圖中所給信息解答下列問題:

九年級(jí)(1)班參加體育測(cè)試的學(xué)生有_________人;

將條形統(tǒng)計(jì)圖補(bǔ)充完整;

在扇形統(tǒng)計(jì)圖中,等級(jí)B部分所占的百分比是___,等級(jí)C對(duì)應(yīng)的圓心角的度數(shù)為___°

若該校九年級(jí)學(xué)生共有850人參加體育測(cè)試,估計(jì)達(dá)到A級(jí)和B級(jí)的學(xué)生共有___人.

查看答案和解析>>

同步練習(xí)冊(cè)答案