(2009•衢江區(qū)一模)如圖,在△ABC中,AD平分∠BAC交BC于點D.點E、F分別在邊AB、AC上,且BE=AF,F(xiàn)G∥AB交線段AD于點G,連接BG、EF.
求證:四邊形BGFE是平行四邊形.

【答案】分析:本題應(yīng)先由FG∥AB,得出∠BAD=∠AGF,又AD平分∠BAC,則∠BAD=∠GAF所以∠AGF=∠GAF,從而得出AF=GF,又BE=AF,得FG=BE,又FG∥AB,根據(jù)平行四邊形的判定,可推得四邊形BGFE是平行四邊形.
解答:證明:∵FG∥AB,
∴∠BAD=∠AGF.
∵∠BAD=∠GAF
∴∠AGF=∠GAF,
∴AF=GF.
∵BE=AF,
∴FG=BE.
又∵FG∥BE,
∴四邊形BGFE為平行四邊形.
點評:本題考查了平行四邊形的判定,熟練掌握判定定理是解題的關(guān)鍵.平行四邊形共有五種判定方法,記憶時要注意技巧;這五種方法中,一種與對角線有關(guān),一種與對角有關(guān),其他三種與邊有關(guān).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2009年浙江省衢州市衢江區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖平面直角坐標系中,拋物線y=-x2+x+2交x軸于A、B兩點,交y軸于點C.
(1)求證:△ABC為直角三角形;
(2)直線x=m(0<m<4)在線段OB上移動,交x軸于點D,交拋物線于點E,交BC于點F.求當m為何值時,EF=DF?
(3)連接CE和BE后,對于問題“是否存在這樣的點E,使△BCE的面積最大”,小紅同學認為:“當E為拋物線的頂點時,△BCE的面積最大.”她的觀點是否正確?提出你的見解,若△BCE的面積存在最大值,請求出點E的坐標和△BCE的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年浙江省衢州市衢江區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖,P為x軸正半軸上一點,過點P作x軸的垂線,交函數(shù)的圖象于點A,交函數(shù)的圖象于點B,過點B作x軸的平行線,交于點C,連接AC.
(1)當點P的坐標為(2,0)時,求△ABC的面積;
(2)當點P的坐標為(t,0)時,△ABC的面積是否隨t值的變化而變化?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河南省鄭州市鞏義市中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖平面直角坐標系中,拋物線y=-x2+x+2交x軸于A、B兩點,交y軸于點C.
(1)求證:△ABC為直角三角形;
(2)直線x=m(0<m<4)在線段OB上移動,交x軸于點D,交拋物線于點E,交BC于點F.求當m為何值時,EF=DF?
(3)連接CE和BE后,對于問題“是否存在這樣的點E,使△BCE的面積最大”,小紅同學認為:“當E為拋物線的頂點時,△BCE的面積最大.”她的觀點是否正確?提出你的見解,若△BCE的面積存在最大值,請求出點E的坐標和△BCE的最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河南省鄭州市鞏義市中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖,P為x軸正半軸上一點,過點P作x軸的垂線,交函數(shù)的圖象于點A,交函數(shù)的圖象于點B,過點B作x軸的平行線,交于點C,連接AC.
(1)當點P的坐標為(2,0)時,求△ABC的面積;
(2)當點P的坐標為(t,0)時,△ABC的面積是否隨t值的變化而變化?

查看答案和解析>>

科目:初中數(shù)學 來源:2009年海南省海口市中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•衢江區(qū)一模)如圖平面直角坐標系中,拋物線y=-x2+x+2交x軸于A、B兩點,交y軸于點C.
(1)求證:△ABC為直角三角形;
(2)直線x=m(0<m<4)在線段OB上移動,交x軸于點D,交拋物線于點E,交BC于點F.求當m為何值時,EF=DF?
(3)連接CE和BE后,對于問題“是否存在這樣的點E,使△BCE的面積最大”,小紅同學認為:“當E為拋物線的頂點時,△BCE的面積最大.”她的觀點是否正確?提出你的見解,若△BCE的面積存在最大值,請求出點E的坐標和△BCE的最大面積.

查看答案和解析>>

同步練習冊答案