在m為整數(shù)的情況下,不等式mx-m>3x+2的解集有可能為x<-4嗎?如果有可能,求出m的值;否則說明理由.
分析:先將原不等式化簡,再由不等式的解集,可得出關(guān)于m的不等式組,解出即可.
解答:解:原不等式可化為:(m-3)x>m+2,
∵不等式的解集為x<-4,
m-3<0
m+2
m-3
=-4
,
解得:m=2.
點評:本題考查了不等式的解集,屬于基礎(chǔ)題,解答本題的關(guān)鍵是掌握不等式的性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、2008年5月5日,奧運火炬手攜帶奧運圣火火種,離開海拔5200米的“珠峰大本營”向山頂攀登.他們在攀登過程中,海拔每上升1千米,溫度就下降6℃,已知此時“珠峰大本營”的溫度為-4℃,請解答下列問題:
(1)從“珠峰大本營”算起,海拔升高x千米時,氣溫為
-4-6x
℃;
(2)奧運火炬手在低溫和缺氧的情況下,于5月8日9時17分成功登上海拔8844米的地球最高點.求此時峰頂?shù)臏囟龋ńY(jié)果保留到整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過在本地市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時間t(天)的關(guān)系如下表:
時間t(天) 1 3 6 10 36
日銷售量m(件) 94 90 84 76 24
未來40天內(nèi),前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關(guān)系式為y1=
1
4
t+25
(1≤t≤20且t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關(guān)系式為y2=-
1
2
t+40
(21≤t≤40且t為整數(shù)).下面我們就來研究銷售這種商品的有關(guān)問題:
(1)認真分析上表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)的m(件)與t(天)之間的關(guān)系式;
(2)請預(yù)測本地市場在未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在第30天,該公司在外地市場的銷量比本地市場的銷量增加a%還多30件,由于運輸?shù)仍颍撋唐访考杀颈缺镜卦黾?.2a%少5元,在銷售價格相同的情況下當日兩地利潤持平,請你參考以下數(shù)據(jù),通過計算估算出a的整數(shù)值.
(參考數(shù)據(jù):
29
≈5.39
,
30
≈5.48
,
31
≈5.57
32
≈5.66
,
33
≈5.74

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•石景山區(qū)一模)已知二次函數(shù)y=x2-(2m+2)x+(m2+4m-3)中,m為不小于0的整數(shù),它的圖象與x軸交于點A和點B,點A在原點左邊,點B在原點右邊.
(1)求這個二次函數(shù)的解析式;
(2)點C是拋物線與y軸的交點,已知AD=AC(D在線段AB上),有一動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度移動,同時,另一動點Q從點C出發(fā),以某一速度沿線段CB移動,經(jīng)過t秒的移動,線段PQ被CD垂直平分,求t的值;
(3)在(2)的情況下,求四邊形ACQD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆山東省東阿縣姚寨中學(xué)九年級中考數(shù)學(xué)試卷3(帶解析) 題型:解答題

已知二次函數(shù)中,m為不小于0的整數(shù),它的圖像與x軸交于點A和點B,點A在原點左邊,點B在原點右邊.
(1)求這個二次函數(shù)的解析式;
(2)點C是拋物線與軸的交點,已知AD=AC(D在線段AB上),有一動點P從點A出發(fā),沿線段AB以每秒1個單位長度的速度移動,同時,另一動點Q從點C出發(fā),以某一速度沿線段CB移動,經(jīng)過t秒的移動,線段PQ被CD垂直平分,求t的值;
(3)在(2)的情況下,求四邊形ACQD的面積.

查看答案和解析>>

同步練習(xí)冊答案