【題目】如圖,直線與軸、軸分別相交于點C、B,與直線相交于點A.
(1)求A點坐標;
(2)如果在y軸上存在一點P,使△OAP是以O(shè)A為底邊的等腰三角形,求P點坐標;
(3)在直線上是否存在點Q,使△OAQ的面積等于6?若存在,請求出Q點的坐標,若不存在,請說明理由.
【答案】(1)A點坐標是(2,3);(2)P點坐標是(0,);(3)存在;點Q是坐標是((,))或(,)).
【解析】(1)聯(lián)立方程,解方程即可求得;
(2)設(shè)P點坐標是(0,y),根據(jù)勾股定理列出方程,解方程即可求得;
(3)分兩種情況:①當Q點在線段AB上:作QD⊥y軸于點D,則QD=x,根據(jù)S△OBQ=S△OAB﹣S△OAQ列出關(guān)于x的方程解方程求得即可;②當Q點在AC的延長線上時,作QD⊥x軸于點D,則QD=﹣y,根據(jù)S△OCQ=S△OAQ﹣S△OAC列出關(guān)于y的方程解方程求得即可.
(1)解方程組:得:,
∴A點坐標是(2,3);
(2)設(shè)P點坐標是(0,y).
∵△OAP是以OA為底邊的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得:y=,∴P點坐標是(0,).
故答案為:(0,);
(3)存在;
由直線y=﹣2x+7可知B(0,7),C(,0).
∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q點有兩個位置:Q在線段AB上和AC的延長線上,設(shè)點Q的坐標是(x,y).
當Q點在線段AB上:作QD⊥y軸于點D,如圖①,則QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣span>6=1,∴OBQD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐標是();
當Q點在AC的延長線上時,作QD⊥x軸于點D,如圖②則QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=OCQD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐標是(,﹣).
綜上所述:點Q是坐標是()或(,﹣).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為線段上一動點(不與點,重合),在同側(cè)分別作等邊和等邊,與交于點,與交于點,與交于點,連接.下列五個結(jié)論:①;②;③;④DE=DP;⑤.其中正確結(jié)論的個數(shù)是( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,F是CD上一點,E是BF上一點,連接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,則下列結(jié)論中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正確的個數(shù)有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,E、F分別是AD、BC上的點,將平行四邊形ABCD沿EF所在直線翻折,使點B與點D重合,且點A落在點A′處.
(1)求證:△A′ED≌△CFD;
(2)連結(jié)BE,若∠EBF=60°,EF=3,求四邊形BFDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O直徑,點C在⊙O上,
AD平分∠CAB,BD是⊙O的切線,AD與BC相交于點E.
(1)求證:BD=BE;
(2)若DE=2,BD=,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)m是不小于﹣1的實數(shù),關(guān)于x的方程x2+2(m﹣2)x+m2﹣3m+3=0有兩個不相等的實數(shù)根x1、x2,
(1)若x12+x22=6,求m值;
(2)令T=,求T的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
(1)求經(jīng)過B、E、C三點的拋物線的解析式;
(2)判斷△BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;
(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,EF垂直平分AC,交AC于點F,交BC于點E,且BD=DE.
(1)若∠BAE=40°,求∠C的度數(shù);
(2)若△ABC周長為14cm,AC=6cm,求DC長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.
(1)求甲、乙兩種型號設(shè)備的價格;
(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認為該公司有哪幾種購買方案;
(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com