【題目】如圖,已知正方形的邊長為,是的中點,過點作,交于點,連接并延長,交的延長線于點.則的長為( )
A. B. C. D.
【答案】C
【解析】
根據(jù)正方形的性質(zhì)得到AB=BC,∠B=∠BCD=∠BCD=90°,由正方形ABCD的邊長為4,E是BC的中點,得到AB=BC=4,BE=CE=2,根據(jù)余角的性質(zhì)得到∠BAE=∠CEF,推出△ABE∽△CEF,根據(jù)相似三角形的性質(zhì)得到==,求得CF=1,通過△GCF∽△GBA,求得CG=.
∵四邊形ABCD是正方形,
∴AB=BC,∠B=∠BCD=90°,
∵正方形ABCD的邊長為4,E是BC的中點,
∴AB=BC=4,BE=CE=2,
∵EF⊥AE,
∴∠BAE=∠CEF,
∴△ABE∽△CEF,
∴==,
∴CF=1,
∵CD∥AB,
∴△GCF∽△GBA,
∴=,即=,
∴CG=.
故答案選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個,食堂師傅在窗口隨機發(fā)放(發(fā)放的食品價格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.
(1)按約定,“小李同學(xué)在該天早餐得到兩個油餅”是 事件;(可能,必然,不可能)
(2)請用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在第一個△A1BC中,∠B=30°,A1B=CB,在邊A1B上任取一D,延長CA2到A2,使A1A2=A1D,得到第2個△A1A2D,在邊A2B上任取一點E,延長A1A2到A3,使A2A3=A2E,得到第三個△A2A3E,…按此做法繼續(xù)下去,第n個等腰三角形的底角的度數(shù)是_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
如圖1,在正方形ABCD的內(nèi)部,作∠DAE=∠ABF=∠BCG=∠CDH,根據(jù)三角形全等的條件,易得△DAE≌△ABF≌△BCG≌△CDH,從而得到四邊形EFGH是正方形。
類比研究
如圖2,在正△ABC的內(nèi)部,作∠BAD=∠CBE=∠ACF,AD,BE,CF兩兩相交于D,E,F(xiàn)三點(D,E,F(xiàn)三點不重合)。
(1)△ABD,△BCE,△CAF是否全等?如果是,請選擇其中一對進行證明;
(2)△DEF是否為正三角形?請說明理由;
(3)進一步探究發(fā)現(xiàn),△ABD的三邊存在一定的等量關(guān)系,設(shè),,,請?zhí)剿?/span>,,滿足的等量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1) 觀察被開方數(shù)a的小數(shù)點與算術(shù)平方根的小數(shù)點的移動規(guī)律:
a | 0.0001 | 0.01 | 1 | 100 | 10000 |
0.01 | x | 1 | y | 100 |
填空:x= _______, y=______.
(2)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:
①已知≈1.414,則 =________,=_______;
②= 0.274,記的整數(shù)部分為x,則=___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店用1000元人民幣購進水果銷售,過了一段時間又用2800元購進這種水果,所購數(shù)量是第一次購進數(shù)量的2倍,但每千克的價格比第一次購進的貴了2元.
(1)求該商店第一次購進水果多少千克?
(2)該商店兩次購進的水果按照相同的標價銷售一段時間后,將最后剩下的100千克按照標價的半價出售.售完全部水果后,利潤不低于1700元,則最初每千克水果的標價至少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在線段BE上取一點C,分別以CB,CE為腰作等腰直角△BCA和等腰直角△DCE,連接BD和AE.
(1)請判斷線段BD和線段AE的數(shù)量關(guān)系,并說明理由;
(2)如圖2,若B,C,E三點不共線,(1)中的結(jié)論還成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明同學(xué)設(shè)計的“作一個角等于已知角”的尺規(guī)作圖過程.
已知:∠O,
求作:一個角,使它等于∠O.
作法:如圖:
①在∠O的兩邊上分別任取一點A,B;
②以點A為圓心,OA為半徑畫;以點B為
圓心,OB為半徑畫。粌苫〗挥邳cC;
③連結(jié)AC,BC ,所以∠C即為所求作的角.
請根據(jù)小明設(shè)計的尺規(guī)作圖過程,
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下列證明.
證明:連結(jié)AB,
∵OA=AC,OB= , ,
∴≌( )(填推理依據(jù)).
∴∠C=∠O.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.
求證:(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com