【題目】如圖所示,在平面直角坐標系中,二次函數(shù)交x軸于,,在y軸上有一點,連接AE.
求二次函數(shù)的表達式;
點D是第二象限內(nèi)的拋物線上一動點.
①求面積最大值并寫出此時點D的坐標;
②若,求此時點D坐標;
【答案】(1);(2)①D(,);;②
【解析】
(1)將A(4,0),B(2,0)代入y=ax2+bx+6(a≠0),求得;
(2)①由已知可求:,AE的直線解析式,設(shè),過點D與AE垂直的直線解析式為,兩直線的交點為,可求,則有當時,DQ最大為,則面積最大值為;
②過點A作AN⊥DE,DE與x中交于點F,由tan∠AED=,可求AN=,NE=3,因為Rt△AFN∽Rt△EFO,,則有,所以F(2,0),得到EF直線解析式為y=x2,直線與拋物線的交點為D點.
解:將,代入,
可得,,
;
,,
,AE的直線解析式,
設(shè),
過點D與AE垂直的直線解析式為,
兩直線的交點為,
,
當時,DQ最大為,
;
過點A作,DE與x軸交于點F,
,
,,
∽,
,
,
,
,
,
,
直線解析式為,
時,,
;
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,拋物線L:y=ax2+bx+c(a<0)的對稱軸為x=5,且與x軸的左交點為(1,0),則下列說法正確的有( )
①C(9,0);②b+c>﹣10;③y的最大值為﹣16a;④若該拋物線與直線y=8有公共交點,則a的取值范圍是a≤.
A.①②③④B.①②③C.①③④D.①④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,AB=2,AD=4,將矩形ABCD繞點C順時針旋轉(zhuǎn)至矩形EGCF(其中E、G、F分別與A、B、D對應(yīng)).
(1)如圖1,當點G落在AD邊上時,直接寫出AG的長為 ;
(2)如圖2,當點G落在線段AE上時,AD與CG交于點H,求GH的長;
(3)如圖3,記O為矩形ABCD對角線的交點,S為△OGE的面積,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,對角線AC、BD交于O點,DE∥AC,CE∥BD.
(1)求證:四邊形OCED為矩形;
(2)在BC上截取CF=CO,連接OF,若AC=16,BD=12,求四邊形OFCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BO在x軸的負半軸上,,頂點C的坐標為,x反比例函數(shù)的圖象與菱形對角線AO交于點D,連接BD,當軸時,k的值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某汽車交易市場為了解二手轎車的交易情況,將本市場去年成交的二手轎車的全部數(shù)據(jù),以二手轎車交易前的使用時間為標準分為A、B、C、D、E五類,并根據(jù)這些數(shù)據(jù)由甲,乙兩人分別繪制了下面的兩幅統(tǒng)計圖(圖都不完整).
請根據(jù)以上信息,解答下列問題:
(1)該汽車交易市場去年共交易二手轎車 輛.
(2)把這幅條形統(tǒng)計圖補充完整.(畫圖后請標注相應(yīng)的數(shù)據(jù))
(3)在扇形統(tǒng)計圖中,D類二手轎車交易輛數(shù)所對應(yīng)扇形的圓心角為 度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,3個正方形在⊙O直徑的同側(cè),頂點B、C、G、H都在⊙O的直徑上,正方形ABCD的頂點A在⊙O上,頂點D在PC上,正方形EFGH的頂點E在⊙O上、頂點F在QG上,正方形PCGQ的頂點P也在⊙O上.若BC=1,GH=2,則CG的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過點B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點A(﹣1,﹣2),4x+2<kx+b<0的解集為( 。
A.x<﹣2B.﹣2<x<﹣1C.x<﹣1D.x>﹣1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在炎熱的夏季,遮陽傘在我們的生活中隨處可見.如圖①,滑動調(diào)節(jié)式遮陽傘的立柱直于地面,點為立柱上的滑動調(diào)節(jié)點,傘體的截面示意圖為,為中點,,,.當點位于初始位置時,點與重合(如圖②).根據(jù)生活經(jīng)驗,當太陽光線與垂直時,遮陽效果最佳.已知太陽光線與地面的夾角為(如圖③),為使遮陽效果最佳,點需從上調(diào)多少米?(結(jié)果精確到)(參考數(shù)據(jù):,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com