【題目】已知拋物線與直線交于,B兩點(diǎn),與y軸交于點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,直線AB交軸于點(diǎn)D,且,求點(diǎn)B的坐標(biāo);
(3)如圖2,當(dāng)時,在x軸上有且只有一點(diǎn)P,使,求k的值.
【答案】(1);(2);(3)
【解析】
(1)根據(jù)待定系數(shù)法求解即可;
(2)由推出AC=AD,過點(diǎn)A作軸于點(diǎn)M,軸于點(diǎn)N,證明,得到,從而得到AB的解析式,聯(lián)立二次函數(shù)和一次函數(shù),可得點(diǎn)B坐標(biāo);
(3)分別過A,B兩點(diǎn)作軸于點(diǎn)D,軸于點(diǎn)E,證明,則,設(shè)AB解析式為,聯(lián)立,解出,得到點(diǎn)B坐標(biāo),設(shè),代入,再令判別式為零,解出k值即可.
解:(1)拋物線與直線交于,B兩點(diǎn),與y軸交于點(diǎn)C(0,2),
∴c=2,將A(-1,-1)代入,
解得:b=2,
∴拋物線的表達(dá)式為:;
(2)∵,
∴,即,
∴,
過點(diǎn)A作軸于點(diǎn)M,軸于點(diǎn)N,
∴,
∴,
∴,
∴,
∴,
∴AB的解析式為,
聯(lián)立,
解得:,(舍),
可求;
(3)分別過A,B兩點(diǎn)作軸于點(diǎn)D,軸于點(diǎn)E,
∵∠APB=90°,
∴∠APD+∠BPE=90°,而∠APD+∠PAD=90°,
∴∠BPE=∠PAD,而∠ADP=∠BEP,
則,
∴,
設(shè)AB解析式為,
聯(lián)立
∴,
∴,,
設(shè),則,
∴,當(dāng)軸上只有唯一點(diǎn)P時,,
∴,
∴(舍),.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,②,在平面直角坐標(biāo)系xoy中,點(diǎn)A的坐標(biāo)為(4,0),以點(diǎn)A為圓心,4為半徑的圓與x軸交于O,B兩點(diǎn),OC為弦, , P是x軸上的一動點(diǎn),連結(jié)CP。
(1)求的度數(shù);
(2)如圖①,當(dāng)CP與⊙A相切時,求PO的長;
(3)如圖②,當(dāng)點(diǎn)P在直徑OB上時,CP的延長線與⊙A相交于點(diǎn)Q,問PO為何值時,是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,為線段上的一個動點(diǎn),分別以,為邊在的同側(cè)作菱形和菱形,點(diǎn),,在一條直線上,.,分別是對角線,的中點(diǎn).當(dāng)點(diǎn)在線段上移動時,點(diǎn),之間的距離最短為( )
A.B.C.4D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校積極開展“陽光體育”活動,并開設(shè)了跳繩、足球、籃球、跑步四種運(yùn)動項(xiàng)目,為了解學(xué)生最喜愛哪一種項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并繪制了如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(部分信息未給出).
(1)求本次被調(diào)查的學(xué)生人數(shù);
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“籃球”部分所對應(yīng)的圓心角度數(shù)為__ ;
(4)該校共有3000名學(xué)生,請估計(jì)全校最喜愛籃球的人數(shù)比最喜愛足球的人數(shù)多多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個體戶購進(jìn)一批時令水果,20天銷售完畢,他將本次銷售情況進(jìn)行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)可繪制如圖所示的函數(shù)圖象,其中日銷售量y(千克)與銷售時間x(天)之間的函數(shù)關(guān)系如圖所示,則下列說法不正確的是( )
A.第10天銷售20千克B.一天最多銷售30千克
C.第9天與第16天的日銷售量相同D.第19天比第1天多銷售4千克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】受新型冠狀病毒疫情的影響,某市教育主管部門在推遲各級學(xué)校返校時間的同時安排各個學(xué)校開展形式多樣的網(wǎng)絡(luò)教學(xué),學(xué)校計(jì)劃在每周三下午15:30至16:30為學(xué)生提供以下四類學(xué)習(xí)方式供學(xué)生選擇:在線閱讀、微課學(xué)習(xí)、線上答疑、在線討論,為了解學(xué)生的需求,通過網(wǎng)絡(luò)對部分學(xué)生進(jìn)行了“你對哪類在線學(xué)習(xí)方式最感興趣”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
(1)求本次調(diào)查的學(xué)生總?cè)藬?shù);
(2)請求出“線上答疑”在扇形統(tǒng)計(jì)圖中的圓心角度數(shù);
(3)笑笑和瑞瑞同時參加了網(wǎng)絡(luò)學(xué)習(xí),請求出笑笑和瑞瑞選擇同一種學(xué)習(xí)方式的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是學(xué)習(xí)分式方程應(yīng)用時,老師板書的問題和兩名同學(xué)所列的方程
方程中的和表示的意義,下列說法錯誤的是( )
A.表示甲隊(duì)每天修路的長度B.表示乙隊(duì)每天修路的長度
C.表示甲隊(duì)修米所用的時間D.表示乙隊(duì)修米所用的時間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,排球場長為18m,寬為9m,網(wǎng)高為2.24m.隊(duì)員站在底線O點(diǎn)處發(fā)球,球從點(diǎn)O的正上方1.9m的C點(diǎn)發(fā)出,運(yùn)動路線是拋物線的一部分,當(dāng)球運(yùn)動到最高點(diǎn)A時,高度為2.88m.即BA=2.88m.這時水平距離OB=7m,以直線OB為x軸,直線OC為y軸,建立平面直角坐標(biāo)系,如圖2.
(1)若球向正前方運(yùn)動(即x軸垂直于底線),求球運(yùn)動的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式(不必寫出x取值范圍).并判斷這次發(fā)球能否過網(wǎng)?是否出界?說明理由;
(2)若球過網(wǎng)后的落點(diǎn)是對方場地①號位內(nèi)的點(diǎn)P(如圖1,點(diǎn)P距底線1m,邊線0.5m),問發(fā)球點(diǎn)O在底線上的哪個位置?(參考數(shù)據(jù):取1.4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動.當(dāng)△DEF的頂點(diǎn)D移動到AC邊上時,△DEF停止移動,點(diǎn)P也隨之停止移動.DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當(dāng)t為何值時,點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com