作业宝如圖,△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=10,則CD=________.

5
分析:根據(jù)角平分線的定義求出∠CBD=∠ABD=30°,從而得到∠A=∠ABD,根據(jù)等角對(duì)等邊可得BD=AD,然后根據(jù)直角三角形30°角所對(duì)的直角邊等于斜邊的一半解答.
解答:∵∠ABC=60°,BD平分∠ABC,
∴∠CBD=∠ABD=∠ABC=×60°=30°,
∴∠A=∠ABD,
∴BD=AD,
又∵∠C=90°,
∴CD=BD=×10=5.
故答案為:5.
點(diǎn)評(píng):本題考查了直角三角形30°角所對(duì)的直角邊等于斜邊的一半的性質(zhì),角平分線的定義,等角對(duì)等邊的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案