【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)Px軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過點(diǎn)Px軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.

(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;

(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)Px軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?

(3)點(diǎn)P在線段AB運(yùn)動(dòng)過程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)y=﹣x2+x+2;(2)m=﹣1m=3時(shí),四邊形DMQF是平行四邊形;(3)點(diǎn)Q的坐標(biāo)為(3,2)或(﹣1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.

【解析】

(1)待定系數(shù)法求解可得;
(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QMDF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;
(3)易知∠ODB=QMB,故分①∠DOB=MBQ=90°,利用DOB∽△MBQ,再證MBQ∽△BPQ,即,解之即可得此時(shí)m的值;②∠BQM=90°,此時(shí)點(diǎn)Q與點(diǎn)A重合,BOD∽△BQM′,易得點(diǎn)Q坐標(biāo).

1)由拋物線過點(diǎn)A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),
將點(diǎn)C(0,2)代入,得:-4a=2,
解得:a=-,
則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;
(2)由題意知點(diǎn)D坐標(biāo)為(0,-2),
設(shè)直線BD解析式為y=kx+b,
B(4,0)、D(0,-2)代入,得:

,解得:
∴直線BD解析式為y=x-2,
QMx軸,P(m,0),
Q(m,--m2+m+2)、M(m,m-2),
QM=-m2+m+2-(m-2)=-m2+m+4,
F(0,)、D(0,-2),
DF=,
QMDF,
∴當(dāng)-m2+m+4=時(shí),四邊形DMQF是平行四邊形,
解得:m=-1(舍)或m=3,
m=3時(shí),四邊形DMQF是平行四邊形;
(3)如圖所示:

QMDF,
∴∠ODB=QMB,
分以下兩種情況:
①當(dāng)∠DOB=MBQ=90°時(shí),DOB∽△MBQ,
,
∵∠MBQ=90°,
∴∠MBP+PBQ=90°,
∵∠MPB=BPQ=90°,
∴∠MBP+BMP=90°,
∴∠BMP=PBQ,
∴△MBQ∽△BPQ,
,即,
解得:m1=3、m2=4,
當(dāng)m=4時(shí),點(diǎn)P、Q、M均與點(diǎn)B重合,不能構(gòu)成三角形,舍去,
m=3,點(diǎn)Q的坐標(biāo)為(3,2);
②當(dāng)∠BQM=90°時(shí),此時(shí)點(diǎn)Q與點(diǎn)A重合,BOD∽△BQM′,
此時(shí)m=-1,點(diǎn)Q的坐標(biāo)為(-1,0);
綜上,點(diǎn)Q的坐標(biāo)為(3,2)或(-1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與BOD相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲,乙兩人同時(shí)各接受了600個(gè)零件的加工任務(wù),甲比乙每分鐘加工的數(shù)量多,兩人同時(shí)開始加工,加工過程中其中一人因故障停止加工幾分鐘后又繼續(xù)按原速加工,直到他們完成任務(wù),如圖表示甲比乙多加工的零件數(shù)量y(個(gè))與加工時(shí)間x(分)之間的函數(shù)關(guān)系,觀察圖象解決下列問題:

(1)點(diǎn)B的坐標(biāo)是_____,B點(diǎn)表示的實(shí)際意義是_____

(2)求線段BC對(duì)應(yīng)的函數(shù)關(guān)系式和D點(diǎn)坐標(biāo);

(3)乙在加工的過程中,多少分鐘時(shí)比甲少加工100個(gè)零件?

(4)為了使乙能與甲同時(shí)完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每分鐘能加工3個(gè)零件,并把丙加工的零件數(shù)記在乙的名下,問丙應(yīng)在第多少分鐘時(shí)開始幫助乙?并在圖中用虛線畫出丙幫助后yx之間的函數(shù)關(guān)系的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問題探究:如圖1,在ABC中,點(diǎn)DBC的中點(diǎn),DEDFDEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EF

BE、CFEF之間的關(guān)系為:BE+CF  EF;(填、

②若∠A90°,探索線段BE、CF、EF之間的等量關(guān)系,并加以證明.

問題解決:如圖2,在四邊形ABDC中,∠B+C180°DBDC,∠BDC130°,以D為頂點(diǎn)作∠EDF65°,∠EDF的兩邊分別交AB、ACEF兩點(diǎn),連接EF,探索線段BE、CFEF之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠ACB90°,直線l過點(diǎn)C

1)當(dāng)ACBC時(shí),如圖1,分別過點(diǎn)ABAD⊥直線l于點(diǎn)D,BE⊥直線l于點(diǎn) E.△ACD與△CBE是否全等,并說(shuō)明理由;

2)當(dāng)AC9cm,BC6cm時(shí),如圖2,點(diǎn)B與點(diǎn)F關(guān)于直線l對(duì)稱,連接BF、CF,點(diǎn)MAC上,點(diǎn)NCF上一點(diǎn),分別過點(diǎn)M、NMD⊥直線l于點(diǎn)DNE⊥直線l于點(diǎn)E,點(diǎn)MA點(diǎn)出發(fā),以每秒1cm的速度沿AC路徑運(yùn)動(dòng),終點(diǎn)為C,點(diǎn)N從點(diǎn)F出發(fā),以每秒3cm的速度沿FCBCF路徑運(yùn)動(dòng),終點(diǎn)為F,點(diǎn)M、N同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

當(dāng)△CMN為等腰直角三角形時(shí),求t的值;

當(dāng)△MDC與△CEN全等時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地2015年為做好精準(zhǔn)扶貧,投入資金1280萬(wàn)元用于異地安置,并規(guī)劃投入資金逐年增加,2017年在2015年的基礎(chǔ)上增加投入資金1600萬(wàn)元.

(1)從2015年到2017年,該地投入異地安置資金的年平均增長(zhǎng)率為多少?

(2)在2017年異地安置的具體實(shí)施中,該地計(jì)劃投入資金不低于500萬(wàn)元用于優(yōu)先搬遷租房獎(jiǎng)勵(lì),規(guī)定前1000戶(含第1000戶)每戶每天獎(jiǎng)勵(lì)8元,1000戶以后每戶每天獎(jiǎng)勵(lì)5元,按租房400天計(jì)算,求2017年該地至少有多少戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,已知點(diǎn)D,EF分別為BC,AD,AE的中點(diǎn),且SABC=4cm2,則陰影部分面積S=( 。cm2

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,現(xiàn)添加以下哪個(gè)條件不能判定ABE≌△ACD

A.B=CB.AD=AEC.BD=CED.BE=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場(chǎng)獲得利潤(rùn)為W元,試寫出利潤(rùn)W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,,平分,,上,且.

1)求的度數(shù);

2)求證:.

查看答案和解析>>

同步練習(xí)冊(cè)答案