(2005•徐州)如圖,AB是⊙O的弦,PA是⊙O的切線,A是切點,如果∠PAB=30°,那么∠AOB=    度.
【答案】分析:根據(jù)切線的性質(zhì)證明△AOB為等邊三角形.
解答:解:∵OA=OB,
∴∠OAB=∠OBA.
∵∠OAP=90°,∠PAB=30°,
∴∠OAB=60°,
∴∠AOB=60°.
點評:此題主要考查學生對切線的性質(zhì)及等腰三角形的性質(zhì)的掌握情況.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(13)(解析版) 題型:解答題

(2005•徐州)如圖,已知⊙O的直徑AB垂直于弦CD,垂足為G,F(xiàn)是CD延長線上的一點,AF交⊙O于點E,連接CE.若CF=10,,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省徐州市中考數(shù)學試卷(課標卷)(解析版) 題型:解答題

(2005•徐州)如圖1,已知直線y=2x(即直線l1)和直線y=-x+4(即直線l2),l2與x軸相交于點A.點P從原點O出發(fā),向x軸的正方向作勻速運動,速度為每秒1個單位,同時點Q從A點出發(fā),向x軸的負方向作勻速運動,速度為每秒2個單位.設(shè)運動了t秒.
(1)求這時點P、Q的坐標(用t表示).
(2)過點P、Q分別作x軸的垂線,與l1、l2分別相交于點O1、O2(如圖1).以O(shè)1為圓心、O1P為半徑的圓與以O(shè)2為圓心、O2Q為半徑的圓能否相切?若能,求出t值;若不能,說明理由.(同學可在圖2中畫草圖)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省徐州市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•徐州)如圖1,已知直線y=2x(即直線l1)和直線y=-x+4(即直線l2),l2與x軸相交于點A.點P從原點O出發(fā),向x軸的正方向作勻速運動,速度為每秒1個單位,同時點Q從A點出發(fā),向x軸的負方向作勻速運動,速度為每秒2個單位.設(shè)運動了t秒.
(1)求這時點P、Q的坐標(用t表示).
(2)過點P、Q分別作x軸的垂線,與l1、l2分別相交于點O1、O2(如圖1).以O(shè)1為圓心、O1P為半徑的圓與以O(shè)2為圓心、O2Q為半徑的圓能否相切?若能,求出t值;若不能,說明理由.(同學可在圖2中畫草圖)

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省徐州市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•徐州)如圖,已知AB=DC,AC=DB.求證:∠A=∠D.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省徐州市中考數(shù)學試卷(大綱卷)(解析版) 題型:選擇題

(2005•徐州)如圖是我國古代數(shù)學趙爽所著的《勾股圓方圖注》中所畫的圖形,它是由四個相同的直角三角形拼成的,下面關(guān)于此圖形的說法正確的是( )

A.它是軸對稱圖形,但不是中心對稱圖形
B.它是中心對稱圖形,但不是軸對稱圖形
C.它既是軸對稱圖形,又是中心對稱圖形
D.它既不是軸對稱圖形,又不是中心對稱圖形

查看答案和解析>>

同步練習冊答案