精英家教網(wǎng)如圖,在四邊形ABCD中,∠A=90°,∠ABC與∠ADC互補(bǔ).
(1)求∠C的度數(shù);
(2)若BC>CD且AB=AD,請(qǐng)?jiān)趫D上畫(huà)出一條線段,把四邊形ABCD分成兩部分,使得這兩部分能夠重新拼成一個(gè)正方形,并說(shuō)明理由;
(3)若CD=6,BC=8,S四邊形ABCD=49,求AB的值.
分析:(1)根據(jù)多邊形的內(nèi)角和公式可得到∠C的度數(shù)為90°;
(2)過(guò)點(diǎn)A作AE⊥BC,垂足為E.則線段AE把四邊形ABCD分成△ABE和四邊形AECD兩部分,把△ABE以A點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,則被分成的兩部分重新拼成一個(gè)正方形.可以根據(jù)已知利用AAS來(lái)判定△ABE≌△ADF從而得到AE=AF,即得到四邊形AECF是正方形;
(3)連接BD,根據(jù)勾股定理求得BD的長(zhǎng),根據(jù)已知得到△ABD的面積,從而可求得AM的長(zhǎng),再根據(jù)相似三角形的判定得到△ABM∽△ABD.根據(jù)相似三角形的對(duì)應(yīng)邊成比例可得到BM的長(zhǎng),再根據(jù)勾股定理即可求得AB的長(zhǎng).
解答:解:(1)∵∠ABC與∠ADC互補(bǔ),
∴∠ABC+∠ADC=180°.
∵∠A=90°,
∴∠C=360°-90°-180°=90°;

(2)過(guò)點(diǎn)A作AE⊥BC,垂足為E.
則線段AE把四邊形ABCD分成△ABE和四邊形AECD兩部分,把△ABE以A點(diǎn)為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)90°,則被分成的兩部分重新拼成一個(gè)正方形.
過(guò)點(diǎn)A作AF∥BC交CD的延長(zhǎng)線于F,
∵∠ABC+∠ADC=180°,又∠ADF+∠ADC=180°,精英家教網(wǎng)
∴∠ABC=∠ADF.
∵AD=AB,∠AEC=∠AFD=90°,∴△ABE≌△ADF.
∴AE=AF.∴四邊形AECF是正方形;

(3)解法1:連接BD,
∵∠C=90°,CD=6,BC=8,Rt△BCD中,BD=
82+62
=10
又∵S四邊形ABCD=49,∴S△ABD=49-24=25.
過(guò)點(diǎn)A作AM⊥BD垂足為M,
∴S△ABD=
1
2
×BD×AM=25.∴AM=5.
又∵∠BAD=90°,∴△ABM∽△DAM.
AM
BM
=
MD
AM
精英家教網(wǎng)
設(shè)BM=x,則MD=10-x,
5
X
=
10-X
5
.解得x=5.
∴AB=5
2

解法2:連接BD,∠A=90°.
設(shè)AB=x,AD=y,則x2+y2=102,①
1
2
xy=25,∴xy=50.②
由①,②得:(x-y)2=0.
∴x=y.
2x2=100.
∴x=5
2
點(diǎn)評(píng):此題考查了學(xué)生對(duì)正方形的判定、相似三角形的判定、全等三角形的判定等知識(shí)點(diǎn)的綜合運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案