【題目】如圖,已知反比例函數(shù)y=的圖象與一次函數(shù)y=ax+b的圖象相交于點(diǎn)A(1,4)和點(diǎn)B(n,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直接寫出x的取值范圍.
【答案】(1)y=2x+2;(2)當(dāng)x<﹣2或0<x<1時(shí),一次函數(shù)的值小于反比例函數(shù)的值.
【解析】
試題分析:(1)把A的坐標(biāo)代入反比例函數(shù)的解析式,求出m的值,從而確定反比例函數(shù)的解析式,把B的坐標(biāo)代入反比例函數(shù)解析式求出B的坐標(biāo),把A、B的坐標(biāo)代入一次函數(shù)的解析式,即可求出a,b的值,從而確定一次函數(shù)的解析式;
(2)根據(jù)函數(shù)的圖象即可得出一次函數(shù)的值小于反比例函數(shù)的值的x的取值范圍.
解:(1)∵反比例函數(shù)y=的圖象過(guò)點(diǎn)A(1,4),
∴4=,即m=4,
∴反比例函數(shù)的解析式為:y=.
∵反比例函數(shù)y=的圖象過(guò)點(diǎn)B(n,﹣2),
∴﹣2=,
解得:n=﹣2
∴B(﹣2,﹣2).
∵一次函數(shù)y=ax+b(k≠0)的圖象過(guò)點(diǎn)A(1,4)和點(diǎn)B(﹣2,﹣2),
∴,
解得 .
∴一次函數(shù)的解析式為:y=2x+2;
(2)由圖象可知:當(dāng)x<﹣2或0<x<1時(shí),一次函數(shù)的值小于反比例函數(shù)的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某汽車銷售公司經(jīng)銷某品牌A款汽車,隨著汽車的普及,其價(jià)格也在不斷下降.今年5月份A款汽車的售價(jià)比去年同期每輛降價(jià)1萬(wàn)元,如果賣出相同數(shù)量的A款汽車,去年銷售額為100萬(wàn)元,今年銷售額只有90萬(wàn)元.
(1)今年5月份A款汽車每輛售價(jià)多少萬(wàn)元?
(2)為了增加收入,汽車銷售公司決定再經(jīng)銷同品牌的B款汽車,已知A款汽車每輛進(jìn)價(jià)為7.5萬(wàn)元,B款汽車每輛進(jìn)價(jià)為6萬(wàn)元,公司預(yù)計(jì)用不多于105萬(wàn)元且不少于99萬(wàn)元的資金購(gòu)進(jìn)這兩款汽車共15輛,有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E,F(xiàn)在BC上,EM垂直平分AB交AB于點(diǎn)M,F(xiàn)N垂直平分AC交AC于點(diǎn)N,∠EAF=90°,BC=12,EF=5.
(1)求∠BAC的度數(shù);
(2)求S△EAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面計(jì)算正確的是( )
A. ﹣5×(﹣4)×(﹣2)×(﹣2)=5×4×2×2=80
B. 12×(﹣5)=﹣50
C. (﹣9)×5×(﹣4)×0=9×5×4=180
D. (﹣36)×(﹣1)=﹣36
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四條線段的長(zhǎng)分別為3,4,5,7,則它們首尾相連可以組成不同的三角形的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).
(1)求點(diǎn)C到x軸的距離;
(2)分別求△ABC的三邊長(zhǎng);
(3)點(diǎn)P在y軸上,當(dāng)△ABP的面積為6時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8cm,則AC的長(zhǎng)為( )
A.2cm B.4cm C.2cm或4cm D.2cm或4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,∠ABT=45°,AT=AB.
(1)求證:AT是⊙O的切線;
(2)連接OT交⊙O于點(diǎn)C,連接AC,求tan∠TAC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com