.一個等邊三角形的邊長為2,則這個等邊三角形的面積為 


 

考點: 等邊三角形的性質(zhì).

分析: 根據(jù)等邊三角形三線合一的性質(zhì)可得D為BC的中點,即BD=CD,在直角三角形ABD中,已知AB、BD,根據(jù)勾股定理即可求得AD的長,即可求三角形ABC的面積,即可解題.

解答: 解:∵等邊三角形高線即中點,AB=2,

∴BD=CD=1,

在Rt△ABD中,AB=2,BD=1,

∴AD===,

∴S△ABC=BC•AD=×2×=,

故答案為:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,四邊形ABCD中,AD∥BC,AE⊥AD交BD于點E,CF⊥BC交BD于點F,且AE=CF.求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在△ABC中,DE∥BC,AD:DB=1:2,BC=2,那么DE=( 。

  A.  B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=ax2+bx+c(a≠0)的圖象過點C(0,1),頂點為Q(2,3),點D在x軸正半軸上,且OD=OC.

(1)求直線CD的解析式;

(2)求拋物線的解析式;

(3)將直線CD繞點C逆時針方向旋轉(zhuǎn)45°所得直線與拋物線相交于另一點E,求證:△CEQ∽△CDO;

(4)在(3)的條件下,若點P是線段QE上的動點,點F是線段OD上的動點,問:在P點和F點移動過程中,△PCF的周長是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


若不等式組有解,則a的取值范圍是( 。

  A. a>2 B. a<2 C. a≤2 D. a≥2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,直線l1:y1=﹣x+2與x軸,y軸分別交于A,B兩點,點P(m,3)為直線l1上一點,另一直線l2:y2=x+b過點P.

(1)求點P坐標(biāo)和b的值;

(2)若點C是直線l2與x軸的交點,動點Q從點C開始以每秒1個單位的速度向x軸正方向移動.設(shè)點Q的運動時間為t秒.

①請寫出當(dāng)點Q在運動過程中,△APQ的面積S與t的函數(shù)關(guān)系式;

②求出t為多少時,△APQ的面積小于3;

③是否存在t的值,使△APQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


x2﹣8x﹣10=0;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如果一個直角三角形的兩邊長分別為3和4,第三邊長為a,那么a2= 

查看答案和解析>>

同步練習(xí)冊答案