【題目】計(jì)算:|﹣2|+2sin30°﹣(﹣ )2+(tan45°)﹣1 .
【答案】解:原式=2+1﹣3+1=1
【解析】本題涉及絕對(duì)值、負(fù)整數(shù)指數(shù)冪、特殊角的三角函數(shù)值、二次根式化簡(jiǎn)四個(gè)考點(diǎn).在計(jì)算時(shí),需要針對(duì)每個(gè)考點(diǎn)分別進(jìn)行計(jì)算,然后根據(jù)實(shí)數(shù)的運(yùn)算法則求得計(jì)算結(jié)果.
【考點(diǎn)精析】利用整數(shù)指數(shù)冪的運(yùn)算性質(zhì)和特殊角的三角函數(shù)值對(duì)題目進(jìn)行判斷即可得到答案,需要熟知aman=am+n(m、n是正整數(shù));(am)n=amn(m、n是正整數(shù));(ab)n=anbn(n是正整數(shù));am/an=am-n(a不等于0,m、n為正整數(shù));(a/b)n=an/bn(n為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于A,B兩點(diǎn),與x軸交于C點(diǎn),與y軸交于D點(diǎn);點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:在數(shù)學(xué)課上,老師給同學(xué)們布置了一道尺規(guī)作圖題: 尺規(guī)作圖:作Rt△ABC,使其斜邊AB=c,一條直角邊BC=a.已知:如圖1,正比例函數(shù)和反比例函數(shù)的
圖象分別交于M、N兩點(diǎn).
要求:在y軸上求作點(diǎn)P,使得∠MPN為直角.
小麗的作法如下:如圖2,以點(diǎn)O為圓心,以O(shè)M長(zhǎng)為半徑作⊙O,
⊙O與y軸交于P1、P2兩點(diǎn),則點(diǎn)P1、P2即為所求.
老師說(shuō):“小麗的作法正確.”
請(qǐng)回答:小麗這樣作圖的依據(jù)是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中.
(1)以圖中的點(diǎn)O為位似中心,在網(wǎng)格中畫(huà)出△ABC的位似圖形△A1B1C1 , 使△A1B1C1與△ABC的位似比為2:1;
(2)若△A1B1C1的面積為S,則△ABC的面積是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(10,0),B(4,8),C(0,8),連接AB,BC,點(diǎn)P在x軸上,從原點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)M從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿折線A﹣B﹣C向點(diǎn)C運(yùn)動(dòng),其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)P,M兩點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求AB長(zhǎng);
(2)設(shè)△PAM的面積為S,當(dāng)0≤t≤5時(shí),求S與t的函數(shù)關(guān)系式,并指出S取最大值時(shí),點(diǎn)P的位置;
(3)t為何值時(shí),△APM為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】鄂州市化工材料經(jīng)銷(xiāo)公司購(gòu)進(jìn)一種化工原料若干千克,價(jià)格為每千克30元.物價(jià)部門(mén)規(guī)定其銷(xiāo)售單價(jià)不高于每千克60元,不低于每千克30元.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):日銷(xiāo)售量y(千克)是銷(xiāo)售單價(jià)x(元)的一次函數(shù),且當(dāng)x=60時(shí),y=80;x=50時(shí),y=100.在銷(xiāo)售過(guò)程中,每天還要支付其他費(fèi)用450元.
(1)求出y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍.
(2)求該公司銷(xiāo)售該原料日獲利w(元)與銷(xiāo)售單價(jià)x(元)之間的函數(shù)關(guān)系式.
(3)當(dāng)銷(xiāo)售單價(jià)為多少元時(shí),該公司日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是AC邊上一點(diǎn),且AD=2DC,E是AB邊上一點(diǎn),ED與BC的延長(zhǎng)線相交于點(diǎn)F,且BC=CF,G是EF的中點(diǎn),連接CG,若CG=2,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知銳角△ABC中,邊BC長(zhǎng)為12,高AD長(zhǎng)為8.
(1)如圖,矩形EFGH的邊GH在BC邊上,其余兩個(gè)頂點(diǎn)E、F分別在AB、AC邊上,EF交AD于點(diǎn)K.
①求 的值;
②設(shè)EH=x,矩形EFGH的面積為S,求S與x的函數(shù)關(guān)系式,并求S的最大值;
(2)若AB=AC,正方形PQMN的兩個(gè)頂點(diǎn)在△ABC一邊上,另兩個(gè)頂點(diǎn)分別在△ABC的另兩邊上,直接寫(xiě)出正方形PQMN的邊長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com