【題目】如圖,△ABC的面積為1.第一次操作:分別延長AB,BC,CA至點A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,…按此規(guī)律,要使得到的三角形的面積超過2010,最少經(jīng)過幾次操作 ( )
A. 6 B. 5 C. 4 D. 3
【答案】C
【解析】試題分析:先根據(jù)已知條件求出△A1B1C1及△A2B2C2的面積,再根據(jù)兩三角形的倍數(shù)關(guān)系求解即可.
解:△ABC與△A1BB1底相等(AB=A1B),高為1:2(BB1=2BC),故面積比為1:2,
∵△ABC面積為1,
∴S△A1B1B=2.
同理可得,S△C1B1C=2,S△AA1C=2,
∴S△A1B1C1=S△C1B1C+S△AA1C+S△A1B1B+S△ABC=2+2+2+1=7;
同理可證△A2B2C2的面積=7×△A1B1C1的面積=49,
第三次操作后的面積為7×49=343,
第四次操作后的面積為7×343=2401.
故按此規(guī)律,要使得到的三角形的面積超過2015,最少經(jīng)過4次操作.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果∠A的兩邊分別與∠B的兩邊平行,且∠A比∠B的3倍少40°,則這兩個角的度數(shù)分別為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知D為直線BC上一點,若∠ABC=x°,∠BAD=y°.
(1)若CD=CA=AB,請求出y與x的等量關(guān)系式;
(2)當D為邊BC上一點,并且CD=CA,x=40,y=30時,則AB AC(填“=”或“≠”);
(3)如果把(2)中的條件“CD=CA”變?yōu)?/span>“CD=AB”,且x,y的取值不變,那么(1)中的結(jié)論是否仍成立?若成立請寫出證明過程,若不成立請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】過直線l外一點P用直尺和圓規(guī)作直線l的垂線的方法是:以點P為圓心,大于點P到直線l的距離長為半徑畫弧,交直線l于點A、B;分別以A、B為圓心,大于AB長為半徑畫弧,兩弧交于點C.連結(jié)PC,則PC⊥AB.
請根據(jù)上述作圖方法,用數(shù)學(xué)表達式補充完整下面的已知條件,并給出證明.
已知:如圖,點P、C在直線l的兩側(cè),點A、B在直線l上,且 , .求證:PC⊥AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列多項式中是完全平方式的是( )
A. 2x2+4x-4 B. 16x2-8y2+1 C. 9a2-12a+4 D. x2y2+2xy+y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=α∠C;④∠A﹕∠B﹕∠C=1﹕2﹕3中能確定△ABC為直角三角形的條件有( )
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中E是BC上的一點,EC=2BE,點D是AC的中點,設(shè)△ABC,△ADF,△BEF的面積分別為S△ABC,S△ADF,S△BEF,且S△ABC=12,則S△ADF﹣S△BEF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運用平方差公式計算,錯誤的是( )
A. (a+b)(a﹣b)=a2﹣b2 B. (2x+1)(2x﹣1)=2x2﹣1
C. (x+1)(x﹣1)=x2﹣1 D. (﹣3x+2)(﹣3x﹣2)=9x2﹣4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com