【題目】如圖,∠ADC=130°,∠ABC=ADC,BF、DE分別平分∠ABC與∠ADC,交對(duì)邊于F、E,且∠ABF=AED,過EEHADADH

1)在圖中作出線段BFEH(不要求尺規(guī)作圖);

2)求∠AEH的大小。

小亮同學(xué)根據(jù)條件進(jìn)行推理計(jì)算,得出結(jié)論,請(qǐng)你在括號(hào)內(nèi)注明理由。

證明:∵BF、DE分別平分∠ABC與∠ADC,(已知)

∴∠ABF=ABC,∠CDE=ADC。(

∵∠ABC=ADC,(已知)

∴∠ABF=CDE。(等式的性質(zhì))

∵∠ABF=AED,(已知)

∴∠CDE=AED。(

ABCD。(

∵∠ADC=130°(已知)

∴∠A=180°-ADC=50°(兩直線平行,同旁內(nèi)角互補(bǔ))

EHADH(已知)

∴∠EHA=90°(垂直的定義)

∴在RtAEH中,∠AEH=90°-A =40°。

【答案】1)見解析;(2)見解析

【解析】

1)根據(jù)題意作圖即可;

2)根據(jù)證明過程寫出相應(yīng)的理由即可.

作∠ABC的平分線BF,EEHADADH,如圖所示

2 角平分線性質(zhì) 等式的性質(zhì) 內(nèi)錯(cuò)角相等,兩直線平行 在直角三角形中,兩銳角互余

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為直線與直線的交點(diǎn),點(diǎn)在線段,.

1)求點(diǎn)的坐標(biāo);

2)若為線段上一動(dòng)點(diǎn)(不與重合),的橫坐標(biāo)為,的面積為,請(qǐng)求出的函數(shù)關(guān)系式;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn).已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上點(diǎn)A(1,0)及點(diǎn)B.


(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b≥(x-2)2+m的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知P(-3,m)Q(1,m)是拋物線y=2x2+bx+1上的兩點(diǎn).

(1)b的值;

(2)A(-2,y1),B(5,y2)是拋物線y=2x2+bx+1上的兩點(diǎn),試比較y1y2的大小關(guān)系;

(3)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù))個(gè)單位長(zhǎng)度,使平移后的圖象與x軸無交點(diǎn),求k的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】天水市某企業(yè)接到一批粽子生產(chǎn)任務(wù),按要求在19天內(nèi)完成,約定這批粽子的出廠價(jià)為每只4元,為按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李紅第x天生產(chǎn)的粽子數(shù)量為y只,yx滿足如下關(guān)系:

(1)李紅第幾天生產(chǎn)的粽子數(shù)量為260只?

(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,px之間的關(guān)系可用圖中的函數(shù)圖象來刻畫,若李紅第x天創(chuàng)造的利潤(rùn)為w元,求wx之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大?最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在ABC中,∠BAC=,∠ABC=,∠BCA=,ABC的三條角平分線AD,BE,CF交于點(diǎn)O,過OABC三邊作垂線,垂足分別為P,Q,H,如下圖所示。

1)若=78°,=56°,=46°,求∠EOH的大小;

2)用,表示∠EOH的表達(dá)式為∠EOH= ;(要求表達(dá)式最簡(jiǎn))

3)若,∠EOH+DOP+FOQ=,判斷ABC的形狀并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),縱坐標(biāo)為a的點(diǎn)A在y軸上,橫坐標(biāo)為b的點(diǎn)B在x軸上,實(shí)數(shù)a,b滿足|a+b﹣8|+(3a﹣2b+1)2=0

(1)求a,b的值;

(2)如圖1,第一象限的點(diǎn)P在∠AOB的平分線OC上,過點(diǎn)P作x軸的垂線,點(diǎn)D為垂足,設(shè)線段PD的長(zhǎng)為d,△PAB的面積為S(S≠0)用含d的式子表示S,并直接寫出相應(yīng)的d的范圍

(3)在(2)的條件下,如圖2,當(dāng)PA⊥PB時(shí),點(diǎn)E在x軸上,連接PE,∠APE=2∠ABO,求PE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ACDE是證明勾股定理時(shí)用到的一個(gè)圖形,a、bcRtABCRtBED邊長(zhǎng),易知AE=c,這時(shí)我們把關(guān)于x的形如ax+cx+b=0的一元二次方程稱為“勾系一元二次方程”.

請(qǐng)解決下列問題

寫出一個(gè)“勾系一元二次方程”;

求證關(guān)于x的“勾系一元二次方程”ax+cx+b=0必有實(shí)數(shù)根;

x=1是“勾系一元二次方程”ax+cx+b=0的一個(gè)根且四邊形ACDE的周長(zhǎng)是,ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示梯形ABCD中,分別為的中點(diǎn),求EF

查看答案和解析>>

同步練習(xí)冊(cè)答案