【題目】在直線L上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4 , 則S1+2S2+2S3+S4=( )
A.5
B.4
C.6
D.10
【答案】C
【解析】解:如圖,∵圖中的四邊形為正方形, ∴∠ABD=90°,AB=DB,
∴∠ABC+∠DBE=90°,
∵∠ABC+∠CAB=90°,
∴∠CAB=∠DBE,
∵在△ABC和△BDE中,
,
∴△ABC≌△BDE(AAS),
∴AC=BE,
∵DE2+BE2=BD2 ,
∴ED2+AC2=BD2 ,
∵S1=AC2 , S2=DE2 , BD2=1,
∴S1+S2=1,
同理可得S2+S3=2,S3+S4=3,
∴S1+2S2+2S3+S4=1+2+3=6.
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)正方形的性質(zhì)的理解,了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,E、F分別是AB、AC的中點(diǎn).
(1)若AB=10,AC=8,求四邊形AEDF的周長;
(2)求證:EF垂直平分AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.將圖1中的三角板繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖2,使一邊OM在∠BOC的內(nèi)部,另一邊ON仍在直線AB的下方.
(1)若OM恰好平分∠BOC,求∠BON的度數(shù);
(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度數(shù);
(3)若設(shè)∠BON=α(0°<α<90°),試用含α的代數(shù)式表示∠COM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛在A,B兩家體育用品商店都發(fā)現(xiàn)了他看中的羽毛球拍和籃球,兩家商店的羽毛球拍和籃球的單價(jià)都是相同的,羽毛球拍和籃球單價(jià)之和是426元,且籃球的單價(jià)是羽毛球拍的單價(jià)的4倍少9元.
(1)求小剛看中的羽毛球拍和籃球的單價(jià)各是多少元?
(2)小剛在元旦這一天上街,恰好趕上商店促銷,A商店所有商品打八五折銷售,B商店全場(chǎng)購物滿100元返購物券20元(不足100元不返券,購物券全場(chǎng)通用,用購物券購物不再返券),但他只帶了380元錢,如果他只在一家商店購買看中的這兩樣商品,你能說明他可以選擇在哪一家購買嗎?若兩家都可以選擇,在哪一家購買更省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)圖回答下列問題
(1)數(shù)軸上表示5與﹣2兩點(diǎn)之間的距離是 ,
(2)數(shù)軸上表示x與2的兩點(diǎn)之間的距離可以表示為 .
(3)如果|x﹣2|=5,則x= .
(4)同理|x+3|+|x﹣1|表示數(shù)軸上有理數(shù)x所對(duì)應(yīng)的點(diǎn)到﹣3和1所對(duì)應(yīng)的點(diǎn)的距離之和,請(qǐng)你找出所有符合條件的整數(shù)x,使得|x+3|+|x﹣1|=4,這樣的整數(shù)是 .
(5)由以上探索猜想對(duì)于任何有理數(shù)x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值;如果沒有,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)10﹣(﹣5)+(﹣9)
(2)(﹣3)×(﹣9)+(﹣5)
(3)
(4)﹣12014÷(﹣5)2×(﹣ )﹣|0.8﹣1|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)(m,n)在函數(shù)y=2x+1的圖象上,則2m-n的值是( )
A. 2 B. -2 C. 8 D. -1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O為圓心,OC為半徑作⊙O.
(1)求證:AB是⊙O的切線.
(2)已知AO交⊙O于點(diǎn)E,延長AO交⊙O于點(diǎn)D,tanD=,求的值.
(3)(3分)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com