精英家教網(wǎng)如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點(diǎn),OA、OB的長(zhǎng)分別是關(guān)于x的方程x2-14x+4(AB+2)=0的兩個(gè)根(OB>OA),P是直線l上A、B兩點(diǎn)之間的一動(dòng)點(diǎn)(不與A、B重合),PQ∥OB交OA于點(diǎn)Q.
(1)求tan∠BAO的值;
(2)若S△PAQ=
13
S四邊形OQPB時(shí),請(qǐng)確定點(diǎn)P在AB上的位置,并求出線段PQ的長(zhǎng);
(3)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)時(shí),在y軸上是否存在點(diǎn)M,使△MPQ為等腰直角三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)根據(jù)勾股定理得出OA2+OB2=AB2,求出AB.然后把AB代入等式求出x的值繼而求出OA,OB的值即可;
(2)已知S△PAQ=
1
3
S四邊形OQPB,證明△PQA∽△BOA利用線段比求出AB,AP的值.知道PQ=PA•sin∠BAO,即可求解.
解答:解:(1)∵OA、OB的長(zhǎng)分別是關(guān)于x的方程x2-14x+4(AB+2)=0的兩個(gè)根,
∴OA+OB=-
b
a
=14,
由已知可得
OA+OB=14
OA•OB=4(AB+2)
,
又∵OA2+OB2=AB2,
∴(OA+OB)2-2OA•OB=AB2
即142-8(AB+2)=AB2,
∴AB2+8AB-180=0,
∴AB=10或AB=-18(不合題意,舍去),
∴AB=10,
∴x2-14x+48=0,
解得x1=6,x2=8,
∵OB>OA,∴OA=6,OB=8,
∴tan∠BAO=
OB
OA
=
4
3


(2)∵S△PAQ=
1
3
S四邊形OQPB,
∴S△PAQ=
1
4
S△AOB,
∵PQ∥BO,精英家教網(wǎng)
∴△PQA∽△BOA,
(
AP
AB
)2=(
PQ
BO
)2=
S△PQA
S△BOA
=
1
4
,
AP
AB
=
1
2
.∵AB=10,
∴AP=5,
又∵tan∠BAO=
4
3
,
∴sin∠BAO=
4
5

∴PQ=PA•sin∠BAO=
4
5
=4


(3)存在,
設(shè)AB的解析式是y=kx+b,
6k+b=0
b=8
,
解得:
k=-
4
3
b=8
,
則解析式是:y=-
4
3
x+8,
即4x+3y=24(*)
精英家教網(wǎng)
①當(dāng)∠PQM=90°時(shí),由PQ∥OB且|PQ|=|MQ|此時(shí)M點(diǎn)與原點(diǎn)O重合,設(shè)Q(a,0)則P(a,a)
有(a,a)代入(*)得a=
1
2

②當(dāng)∠MPQ=90°,
由PQ∥OB且|MP|=|PQ|設(shè)Q(a,0)則M(0,a),P(a,a)進(jìn)而得a=
24
7

③當(dāng)∠PMQ=90°,由PQ∥OB,|PM|=|MQ|且|OM|=|OQ|=|PQ|
設(shè)Q(a,0)則M(0,a)點(diǎn)P坐標(biāo)為(a,2a)代入(*)得a=
12
5

綜上所述,y軸上有三個(gè)點(diǎn)M1(0,0),M2(0,
24
7
)和M3(0,
12
5
)滿足使△PMQ為等腰直角三角形.
點(diǎn)評(píng):本題綜合考查了一次函數(shù)的性質(zhì)以及三角函數(shù)的有關(guān)知識(shí),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,直線m與x軸、y軸分別交于點(diǎn)B,A,且A,B兩點(diǎn)的坐標(biāo)分別為A(0,3),B(4,0).
(1)請(qǐng)求出直線m的函數(shù)解析式;
(2)在x軸上是否存在這樣的點(diǎn)C,使△ABC為等腰三角形?請(qǐng)求出點(diǎn)C的坐標(biāo)(不需要具體過(guò)程),并在坐標(biāo)系中標(biāo)出點(diǎn)C的大致位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,直線AB與x軸負(fù)半軸、y軸正半軸分別交于A、B兩點(diǎn).OA、OB的長(zhǎng)度分別為a和b,且滿足a2-2ab+b2=0.
(1)判斷△AOB的形狀.
(2)如圖②,正比例函數(shù)y=kx(k<0)的圖象與直線AB交于點(diǎn)Q,過(guò)A、B兩點(diǎn)分別作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的長(zhǎng).
(3)如圖③,E為AB上一動(dòng)點(diǎn),以AE為斜邊作等腰直角△ADE,P為BE的中點(diǎn),連接PD、PO,試問(wèn):線段PD、PO是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?寫出你的結(jié)論并證明.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線l與x軸、y軸分別交于點(diǎn)M(8,0),點(diǎn)N(0,6).點(diǎn)P從點(diǎn)N出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿N?O方向運(yùn)動(dòng),點(diǎn)Q從點(diǎn)O出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿O→M的方向運(yùn)動(dòng).已知點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)Q達(dá)點(diǎn)M時(shí),P、Q兩精英家教網(wǎng)點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)設(shè)四邊形MNPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍.
(2)當(dāng)t為何值時(shí),PQ與l平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo);(2)求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

9、如圖,直線AB與x軸相交于點(diǎn)A(1,0),則直線AB繞點(diǎn)A旋轉(zhuǎn)90°后所得到的直線解析式可能是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案