【題目】如圖,已知二次函數(shù)y=x2mxm1的圖像交x軸于A、B兩點(diǎn)(A、B分別位于坐標(biāo)原點(diǎn)O的左、右兩側(cè)),交y軸于點(diǎn)C,且△ABC的面積為6

1)求這個(gè)二次函數(shù)的表達(dá)式;

2)若P為平面內(nèi)一點(diǎn),且PB=3PA,試求當(dāng)△PAB的面積取得最大值時(shí)點(diǎn)P的坐標(biāo),并求此時(shí)直線PO將△ABC分成的兩部分的面積之比.

【答案】1y=x22x3;(253115

【解析】

1)分別求出AB,C的坐標(biāo),結(jié)合△ABC的面積為6,列出關(guān)于m的方程,求出m的值,即可得到二次函數(shù)解析式;

2)設(shè)P(a,b),根據(jù)PB=3PA以及兩點(diǎn)間的距離公式,得到b2關(guān)于a的二次函數(shù),利用二次函數(shù)的性質(zhì),求出使△PAB面積最大時(shí),點(diǎn)P的坐標(biāo),然后分兩種情況:①當(dāng)P1(-)時(shí),②當(dāng)P2(-,-)時(shí),分別求出此時(shí)直線PO將△ABC分成的兩部分的面積之比,即可.

1)令y=0,得:0=x2mxm1,解得:x1=1x2=m1,

A(-10),B(m1,0).

當(dāng)x=0時(shí),y=m1

C(0,-m1).

B(m10)在y軸的右側(cè),

m10

由“△ABC的面積為6”得:S=m1)(m2=6,

解得:m1=5(舍去m2=2,

y=x22x3

2)設(shè)P(a,b),

A(-1,0),B(30),PB=3PA,

PB2=9PA2,即(3a2b2=9[(-1a2b2],

化簡(jiǎn)得:b2=a23a

要使△PAB面積最大,底AB=4為定值,因此只要使AB邊上的高最大,即b2取得最大值.

b2=-(a2,

∴當(dāng)a=時(shí),b2取得最大值為,即取得最大值為,

P1(-,),P2(-,-).

①當(dāng)P1(-)時(shí),直線P1O的解析式為:y=x,

B(30),C(0,-3),

∴直線BC的解析式為:y=x3

聯(lián)立y=xy=x3,-x=x-3,解得:x=

P1OBC的交點(diǎn)Q1(,-),

∴△OBQ1的面積=×3×=,四邊形ACQ1O的面積=6-=

∴此時(shí)直線PO將△ABC分成的兩部分的面積之比為,即53

②當(dāng)P2(-,-)時(shí),與①同理可得直線PO將△ABC分成的兩部分的面積之比為115

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠C=90°,BC=6,DE是△ABC的中位線,點(diǎn)DAB上,把點(diǎn)B繞點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)α0°<α<180°)角得到點(diǎn)F,連接AF,BF.下列結(jié)論:①△ABF是直角三角形;②若△ABF和△ABC全等,則α=2BAC2ABC;③若α=90°,連接EF,則SDEF=4.5;其中正確的結(jié)論是(

A.①②B.①③C.①②③D.②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn)兩點(diǎn),與軸交于點(diǎn),且

求拋物線的解析式;

若點(diǎn)為第一象限拋物線上一點(diǎn),連接,將線段繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到線段連接過(guò)點(diǎn)作直線的垂線,垂足為點(diǎn)E,過(guò)點(diǎn)作直線的垂線,垂足為點(diǎn),作線段的垂直平分線交軸于點(diǎn),過(guò)點(diǎn)軸,交拋物線于點(diǎn),求點(diǎn)的坐標(biāo);

的條件下,延長(zhǎng)的延長(zhǎng)線于點(diǎn),連接于點(diǎn),當(dāng)時(shí),求的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P為平行四邊形ABCD的邊AD上的一點(diǎn),EF分別為PB,PC的中點(diǎn),△PEF,△PDC,△PAB的面積分別為S,.若S=3,則的值為( )

A.24B.12C.6D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,AC兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線與BC邊相交于點(diǎn)D.

(1)求點(diǎn)D的坐標(biāo);

(2)若拋物線經(jīng)過(guò)A、D兩點(diǎn),試確定此拋物線的解析式;

(3)設(shè)(2)中的拋物線的對(duì)稱軸與直線AD交于點(diǎn)M,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),以P、A、M為頂點(diǎn)的三角形與ABD相似,求符合條件的所有點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,建筑物BC的屋頂有一根旗桿AB,從地面上點(diǎn)D處觀測(cè)旗桿頂點(diǎn)A的仰角為50°,觀測(cè)旗桿底部點(diǎn)B的仰角為45°.若旗桿的高度AB3.5米,則建筑物BC的高度約為_____米.(精確到1米,可用參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,以AB為直徑作⊙O,點(diǎn)C是直徑AB上方半圓上的一點(diǎn),連結(jié)ACBC,過(guò)點(diǎn)C作∠ACB的平分線交⊙O于點(diǎn)D,過(guò)點(diǎn)DAB的平行線交CB的延長(zhǎng)線于點(diǎn)E

1)如圖1,連結(jié)AD,求證:∠ADC=∠DEC

2)若⊙O的半徑為5,求CACE的最大值.

3)如圖2,連結(jié)AE,設(shè)tanABCx,tanAECy

①求y關(guān)于x的函數(shù)解析式;

②若,求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明研究一函數(shù)的性質(zhì),下表是該函數(shù)的幾組對(duì)應(yīng)值:

···

-4

-3

-2

-1

0

1

2

3

4

····

···

8

3

0

-1

0

3

0

-3

-6

····

在平面直角坐標(biāo)系中,描出以上表格中的各點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)圖象

根據(jù)所畫(huà)函數(shù)圖象,寫(xiě)出該函數(shù)的一條性質(zhì):

根據(jù)圖像直接寫(xiě)出該函數(shù)的解析式及自變量的取值范圍: ;

若一次函數(shù)與該函數(shù)圖像有三個(gè)交點(diǎn),則的范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】西安市某學(xué)校在“我們?nèi)绾晤A(yù)防感染新型冠狀病毒”宣講培訓(xùn)后,對(duì)學(xué)生知曉情況進(jìn)行了一次測(cè)試,其測(cè)試成績(jī)按照標(biāo)準(zhǔn)劃分為四個(gè)等級(jí):優(yōu)秀,良好,合格,不合格.為了了解該校學(xué)生的成績(jī)狀況,對(duì)在校學(xué)生進(jìn)行隨機(jī)抽樣調(diào)查,并對(duì)調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì),如圖所示.

請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:

1)該校抽樣調(diào)查的學(xué)生人數(shù)為___________

2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

3)樣本中,學(xué)生成績(jī)的中位數(shù)所在等級(jí)是______(填“”、“”、“”或“)

4)該校共有學(xué)生2500人,估計(jì)全校測(cè)試成績(jī)?yōu)閮?yōu)秀和良好的學(xué)生共有______人.

查看答案和解析>>

同步練習(xí)冊(cè)答案