【題目】為了發(fā)展學(xué)生的核心素養(yǎng),培養(yǎng)學(xué)生的綜合能力,某中學(xué)利用陽光大課間,組織學(xué)生積極參加豐富多彩的課外活動(dòng),學(xué)校成立了舞蹈隊(duì)、足球隊(duì)、籃球隊(duì)、毽子隊(duì)、射擊隊(duì)等,其中射擊隊(duì)在某次訓(xùn)練中,甲、乙兩名隊(duì)員各射擊10發(fā)子彈,成績(jī)用如圖的折線統(tǒng)計(jì)圖表示:(甲為實(shí)線,乙為虛線)

(1)依據(jù)折線統(tǒng)計(jì)圖,得到下面的表格:

射擊次序(次)

1

2

3

4

5

6

7

8

9

10

甲的成績(jī)(環(huán))

8

9

7

9

8

6

7

a

10

8

乙的成績(jī)(環(huán))

6

7

9

7

9

10

8

7

b

10

其中a=   ,b=   ;

(2)甲成績(jī)的眾數(shù)是   ,乙成績(jī)的中位數(shù)是   環(huán);

(3)請(qǐng)運(yùn)用方差的知識(shí),判斷甲、乙兩人誰的成績(jī)更為穩(wěn)定?

(4)該校射擊隊(duì)要參加市組織的射擊比賽,已預(yù)選出2名男同學(xué)和2名女同學(xué),現(xiàn)要從這4名同學(xué)中任意選取2名同學(xué)參加比賽,請(qǐng)用列表或畫樹狀圖法,求出恰好選到11女的概率.

【答案】(1)8,7;(2)8,7.5;(3)甲成績(jī)更穩(wěn)定,理由見解析;(4)

【解析】

結(jié)合兩個(gè)統(tǒng)計(jì)圖和直方表,然后求得的值即可;
利用眾數(shù)與中位數(shù)的定義分別求解即可.

分別求出甲、乙的方差,即可判斷.

列表寫出所有的情況,根據(jù)概率的求法計(jì)算概率.

1)由折線統(tǒng)計(jì)圖知

故答案為:8、7;

2)甲射擊成績(jī)次數(shù)最多的是8環(huán),

所以甲成績(jī)的眾數(shù)是8環(huán)

乙射擊成績(jī)重新排列為:6、7、7、77、8、9、9、10、10,

則乙成績(jī)的中位數(shù)為環(huán),

故答案為:87.5;

3)甲成績(jī)的平均數(shù)為(環(huán)),

所以甲成績(jī)的方差為

乙成績(jī)的平均數(shù)為(環(huán)),

所以乙成績(jī)的方差為

故甲成績(jī)更穩(wěn)定;

4)用表示男生,用表示女生,列表得:

A

B

a

b

A

AB

Aa

Ab

B

BA

Ba

Bb

a

aA

aB

ab

b

bA

bB

ba

∵共有12種等可能的結(jié)果,其中一男一女的有8種情況,

∴恰好選到11女的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB、AC分別是O的直徑和弦,ODAC于點(diǎn)D.過點(diǎn)A作O的切線與

OD的延長(zhǎng)線交于點(diǎn)P,PC、AB的延長(zhǎng)線交于點(diǎn)F.

(1)求證:PC是O的切線;

(2)若ABC=60°,AB=10,求線段CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADC,BD=DC

C.B=CBAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商鋪經(jīng)營(yíng)某種旅游紀(jì)念品.該商鋪第一次批發(fā)購進(jìn)該紀(jì)念品共花費(fèi)3 000元,很快全部售完.接著,該商鋪第二次批發(fā)購進(jìn)該紀(jì)念品共花費(fèi)9000元.已知第二次所購進(jìn)該紀(jì)念品的數(shù)量是第一次的2倍還多300個(gè),第二次的進(jìn)價(jià)比第一次的進(jìn)價(jià)提高了20%.

(1)求第一次購進(jìn)該紀(jì)念品的進(jìn)價(jià)是多少元?

(2)若該紀(jì)念品的兩次售價(jià)均為9/個(gè),兩次所購紀(jì)念品全部售完后,求該商鋪兩次共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2xca≠0)x軸交于點(diǎn)AB兩點(diǎn),

其中A(-1,0),y軸交于點(diǎn)C(0,2).

(1)求拋物線的表達(dá)式及點(diǎn)B坐標(biāo);

(2)點(diǎn)E是線段BC上的任意一點(diǎn)(點(diǎn)EB、C不重合),過點(diǎn)E作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G

①設(shè)點(diǎn)E的橫坐標(biāo)為m,用含有m的代數(shù)式表示線段EF的長(zhǎng);

②線段EF長(zhǎng)的最大值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長(zhǎng)方形紙片ABCD沿過點(diǎn)B的直線折疊,使點(diǎn)A落在BC邊上的點(diǎn)F處,折痕為BE(如圖1);再沿過點(diǎn)E的直線折疊,使點(diǎn)D落在BE上的點(diǎn)D′處,折痕為EG(如圖2);再展平紙片(如圖3),則圖3中∠α的大小為()

A.30°B.25.5°C.20°D.22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系中

1作出ABC關(guān)于軸對(duì)稱的并寫出三個(gè)頂點(diǎn)的坐標(biāo) (  ),(  ),( 。;

2直接寫出ABC的面積為 ;

3軸上畫點(diǎn)P,使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,經(jīng)過點(diǎn)A的雙曲線y=(x0)同時(shí)經(jīng)過點(diǎn)B,且點(diǎn)A在點(diǎn)B的左側(cè),點(diǎn)A的橫坐標(biāo)為1,AOB=OBA=45°,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,B=C=90 ,M是BC的中點(diǎn),DM平分ADC.

(1)若連接AM,則AM是否平分BAD?請(qǐng)你證明你的結(jié)論;

(2)線段DM與AM有怎樣的位置關(guān)系?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案