【題目】(1)(問(wèn)題解決)已知點(diǎn)在內(nèi),過(guò)點(diǎn)分別作關(guān)于、的對(duì)稱點(diǎn)、.
①如圖1,若,請(qǐng)直接寫(xiě)出______;
②如圖2,連接分別交、于、,若,求的度數(shù);
③在②的條件下,若度(),請(qǐng)直接寫(xiě)出______度(用含的代數(shù)式表示).
(2)(拓展延伸)利用“有一個(gè)角是的等腰三角形是等邊三角形”這個(gè)結(jié)論,解答問(wèn)題:如圖3,在中,,點(diǎn)是內(nèi)部一定點(diǎn),,點(diǎn)、分別在邊、上,請(qǐng)你在圖3中畫(huà)出使周長(zhǎng)最小的點(diǎn)、的位置(不寫(xiě)畫(huà)法),并直接寫(xiě)出周長(zhǎng)的最小值.
【答案】(1)【問(wèn)題解決】①;②;③;(2)【拓展延伸】如圖,見(jiàn)解析;周長(zhǎng)最小值為8.
【解析】
(1)①連接OP,由點(diǎn)P關(guān)于直線OA的對(duì)稱點(diǎn),點(diǎn)P關(guān)于直線OB的對(duì)稱點(diǎn),可得,,再由+=2(+)=2,即可求得∠AOB的度數(shù);②由,根據(jù)三角形的內(nèi)角和定理可得;由軸對(duì)稱的性質(zhì)得,,,再由三角形外角的性質(zhì)可得,,所以,即可求得;由軸對(duì)稱的性質(zhì)可得,由四邊形的內(nèi)角和為360°即可求得; ③類比②的方法即可解答;(2)作點(diǎn)P關(guān)于邊AB的對(duì)稱點(diǎn),再作點(diǎn)P關(guān)于邊AC的對(duì)稱點(diǎn) ,連結(jié),分別交AB、AC于點(diǎn)E、F,此時(shí)的周長(zhǎng)最小,最小為的長(zhǎng),由①的方法求得∠A=60°,A=A,再由“有一個(gè)角是的等腰三角形是等邊三角形”即可判定△A是等邊三角形,根據(jù)等邊三角形的性質(zhì)可得=AP=8,由此即可得周長(zhǎng)最小值為8.
(1)①連接OP,
∵點(diǎn)P關(guān)于直線OA的對(duì)稱點(diǎn),點(diǎn)P關(guān)于直線OB的對(duì)稱點(diǎn),
∴,,
∴+=2(+)=2,
故答案為:50°;
②如圖2,
∵,
∴,
由軸對(duì)稱的性質(zhì)得,,,
∵,,
∴,
∴,
由軸對(duì)稱的性質(zhì)得,,
∴;
③.
如圖2,
∵,
∴,
由軸對(duì)稱的性質(zhì)得,,,
∵,,
∴,
∴,
由軸對(duì)稱的性質(zhì)得,,
∴=;
故答案為:;
(2)如圖所示,的周長(zhǎng)最小,周長(zhǎng)最小值為8.
①畫(huà)點(diǎn)P關(guān)于邊AB的對(duì)稱點(diǎn),
②畫(huà)點(diǎn)P關(guān)于邊AC的對(duì)稱點(diǎn) ,
③連結(jié),分別交AB、AC于點(diǎn)E、F,
此時(shí)的周長(zhǎng)最小,周長(zhǎng)最小值為8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝品每件的成本是50元,在某段時(shí)間內(nèi)若以每件x元出售,可賣(mài)出(200-2x)件,設(shè)這段時(shí)間內(nèi)售出該工藝品的利潤(rùn)為y元.
(1)直接寫(xiě)出利潤(rùn)y(元)與售價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
(3)如果要使利潤(rùn)不低于1200元,且成本不超過(guò)2500元,請(qǐng)直接寫(xiě)出x的范圍為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果點(diǎn)M(k﹣1,k+1)關(guān)于y軸的對(duì)稱點(diǎn)在第四象限內(nèi),則一次函數(shù)y=(k﹣1)x+k的圖象不經(jīng)過(guò)第( 。┫笙蓿
A.一B.二C.三D.四
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新型冠狀病毒肺炎疫情發(fā)生后,全社會(huì)積極參與疫情防控工作,某市為了盡快完成100萬(wàn)只口罩的生產(chǎn)任務(wù),安排甲、乙兩個(gè)大型工廠完成.已知甲廠每天能生產(chǎn)口罩的數(shù)量是乙廠每天能生產(chǎn)口罩的數(shù)量的1.5倍,并且在獨(dú)立完成60萬(wàn)只口罩的生產(chǎn)任務(wù)時(shí),甲廠比乙廠少用5天.
(1)求甲、乙每天能生產(chǎn)多少萬(wàn)只口罩?
(2)問(wèn)至少應(yīng)安排兩個(gè)工廠工作多少天才能完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠ACB=90°,BC=2,AC=4,點(diǎn)D在射線BC上,以點(diǎn)D為圓心,BD為半徑畫(huà)弧交邊AB于點(diǎn)E,過(guò)點(diǎn)E作EF⊥AB交邊AC于點(diǎn)F,射線ED交射線AC于點(diǎn)G.
(1)求證:△EFG∽△AEG;
(2)設(shè)FG=x,△EFG的面積為y,求y關(guān)于x的函數(shù)解析式并寫(xiě)出定義域;
(3)聯(lián)結(jié)DF,當(dāng)△EFD是等腰三角形時(shí),請(qǐng)直接寫(xiě)出FG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD是△ABC的外角∠EAC的平分線,交BC的延長(zhǎng)線于點(diǎn)D,延長(zhǎng)DA交△ABC的外接圓于點(diǎn)F,連接FB、FC.
(1)求證:FB=FC;
(2)求證:FB2=FAFD;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從三角形(不是等腰三角形)一個(gè)頂點(diǎn)引出一條射線于對(duì)邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個(gè)三角形分割成兩個(gè)小三角形,如果分得的兩個(gè)小三角形中一個(gè)為等腰三角形,另一個(gè)與原三角形相似,我們把這條線段叫做這個(gè)三角形的完美分割線.
(1)如圖1,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD為△ABC的完美分割線.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割線,且△ACD為等腰三角形,求∠ACB的度數(shù).
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=2x﹣4的圖象與x軸、y軸分別相交于點(diǎn)A,B,點(diǎn)P在該函數(shù)圖象上,P到x軸、y軸的距離分別為d1,d2.
(1)當(dāng)P為線段AB的中點(diǎn)時(shí),d1+d2=_____;
(2)設(shè)點(diǎn)P橫坐標(biāo)為m,用含m的代數(shù)式表示d1+d2,并求當(dāng)d1+d2=3時(shí)點(diǎn)P的坐標(biāo);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com