【題目】當題目條件出現(xiàn)角平分線時,我們往往可以構(gòu)造等腰三角形解決問題.如圖1,在△ABC中,∠A=2∠B,CD 平分∠ACB,AD=2,AC=3,求 BC 的長.解決方法:如圖 2,在BC 邊上取點 E,使 EC=AC,連接 DE.可得△DEC≌△DAC 且△BDE 是等腰三角形,所以 BC 的長為 5.試通過構(gòu)造等腰三角形解決問題:如圖 3,△ABC 中,AB=AC,∠A=20°,BD 平分∠ABC,要想求 AD 的長,僅需知道下列哪些線段的長(BC=a, BD=b, DC=c)
A.a 和 bB.a 和 cC.b 和 cD.a、b 和 c
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)“銳角三角函數(shù)”中發(fā)現(xiàn),將如圖所示的矩形紙片ABCD沿過點 B的直線折疊,使點A落在BC上的點E處,還原后,再沿過點E的直線折疊,使點A落在BC上的點F處,這樣就可以求出67.5°角的正切值是
A. +1 B. +1 C. 2.5 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,這一種方法稱為配方法,利用配方法請解以下各題:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:當a取不同的實數(shù)時在得到的代數(shù)式a2﹣4a的值中是否存在最小值?請說明理由.
(3)應(yīng)用:如圖.已知線段AB=6,M是AB上的一個動點,設(shè)AM=x,以AM為一邊作正方形AMND,再以MB、MN為一組鄰邊作長方形MBCN.問:當點M在AB上運動時,長方形MBCN的面積是否存在最大值?若存在,請求出這個最大值;否則請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:長方形ABCD中,AD=10,AB=4,點Q是BC的中點,點P在AD邊上運動,當△BPQ是等腰三角形時,AP的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=4,AE⊥BC于點E,點F,G分別是AB,AD的中點,連接EF,F(xiàn)G,若∠EFG=90°,則FG的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作一個角等于30°”的尺規(guī)作圖過程.
作法:如圖,(1)作射線AD;
(2)在射線AD上任意取一點O(點O不與點A重合);
(3)以點O為圓心,OA為半徑作⊙O,交射線AD于點B;
(4)以點B為圓心,OB為半徑作弧,交⊙O于點C;
(5)作射線AC.
∠DAC即為所求作的30°角.
請回答:該尺規(guī)作圖的依據(jù)是_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形中,,,是折線上的一個動點,點是點關(guān)于直線的對稱點,在點的運動過程中,使是等腰三角形的共有__________個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條筆直的公路上有甲、乙兩地相距2400米,王明步行從甲地到乙地,每分鐘走96米,李越騎車從乙地到甲地后休息2分鐘沿原路原速返回乙地設(shè)他們同時出發(fā),運動的時間為(分),與乙地的距離為(米),圖中線段EF,折線分別表示兩人與乙地距離和運動時間之間的函數(shù)關(guān)系圖象
(1)李越騎車的速度為 米/分鐘;F點的坐標為 ;
(2)求李越從乙地騎往甲地時, 與之間的函數(shù)表達式;
(3)求王明從甲地到乙地時, 與之間的函數(shù)表達式;
(4)求李越與王明第二次相遇時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=2x+2與y軸、x軸分別交于A、B兩點,以B為直角頂點在第二象限作等腰Rt△ABC .
(1)求點C的坐標,并求出直線AC的關(guān)系式.
(2)如圖2,直線CB交y軸于E,在直線CB上取一點D,連接AD,若AD=AC,求證:BE=DE.
(3)如圖3,在(1)的條件下,直線AC交x軸于M,P(,k)是線段BC上一點,在線段BM上是否存在一點N,使△BPN的面積等于△BCM面積的?若存在,請求出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com