【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC上,且BD=CE,BE=CF.
(1)求證:△DEF是等腰三角形;
(2)猜想:當∠A滿足什么條件時,△DEF是等邊三角形?并說明理由.
【答案】(1)證明見解析;(2)當∠A=60°時,△DEF是等邊三角形.
【解析】
試題分析:(1)首先根據條件證明△DBE≌△ECF,根據全等三角形的性質可得DE=FE,進而可得到△DEF是等腰三角形;
(2)∠A=60°時,△DEF是等邊三角形,首先根據△DBE≌△ECF,再證明∠DEF=60°,可以證出結論.
試題解析:(1)證明:∵AB=AC,
∴∠B=∠C,
在△DBE和△ECF中,
,
∴△DBE≌△ECF,
∴DE=FE,
∴△DEF是等腰三角形;
(2)當∠A=60°時,△DEF是等邊三角形,
理由:∵△BDE≌△CEF,
∴∠FEC=∠BDE,
∴∠DEF=180°-∠BED-∠EFC=180°-∠DEB-∠EDB=∠B
要△DEF是等邊三角形,只要∠DEF=60°.
所以,當∠A=60°時,∠B=∠DEF=60°,
則△DEF是等邊三角形.
科目:初中數學 來源: 題型:
【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代換)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A(﹣1,0),C(1,4),點B在x軸上,且AB=4.
(1)求點B的坐標,并畫出△ABC;
(2)求△ABC的面積;
(3)在y軸上是否存在點P,使以A、B、P三點為頂點的三角形的面積為10?若存在,請直接寫出點P的坐標;若不存在,請說明理由
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com