【題目】在甲、乙兩個不透明的口袋中裝有質(zhì)地、大小相同的小球,甲袋中有2個白球,1個黃球和1個紅球:乙袋中裝有1個白球,1個黃球和若干個紅球,從乙盒中仼意摸取一球為紅球的概率是從甲盒中仼意摸取一球為紅球的概率的2倍.

1)乙袋中紅球的個數(shù)為 

2)若摸到白球記1分,摸到黃球記2分,摸到紅球記0分,小明從甲、乙兩袋中先后分別任意摸取一球,請用樹狀圖或列表的方法求小明摸得兩個球得2分的概率.

【答案】12;(2)小明摸得兩個球得2分的概率為

【解析】

(1)首先設(shè)乙袋中紅球的個數(shù)為x個,根據(jù)題意可得方程:,解此方程即可求得答案;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與小明摸得兩個球得2分的情況,再利用概率公式求解即可求得答案.

(1)甲袋中摸出紅球的概率為,則乙袋中摸出紅球的概率為,

設(shè)乙袋中紅球的個數(shù)為x個,

根據(jù)題意得:,

解得:x2

經(jīng)檢驗,x2是原分式方程的解,

乙袋中紅球的個數(shù)是2個,

故答案為:2;

(2)畫樹狀圖得:

共有16種等可能的結(jié)果,

摸到白球記1分,摸到黃球記2分,摸到紅球記0分,

小明摸得兩個球得2分的有5種情況,

小明摸得兩個球得2分的概率為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一工地計劃租用甲、乙兩輛車清理淤泥,從運輸量來估算,若租兩車合運,10天可以完成任務(wù),若甲車的效率是乙車效率的2倍.

甲、乙兩車單獨完成任務(wù)分別需要多少天?

已知兩車合運共需租金65000元,甲車每天的租金比乙車每天的租金多1500試問:租甲乙車兩車、單獨租甲車、單獨租乙車這三種方案中,哪一種租金最少?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校為了提高學(xué)生跳遠科目的成績,對全校500名九年級學(xué)生開展了為期一個月的跳遠科目強化訓(xùn)練.王老師為了了解學(xué)生的訓(xùn)練情況,強化訓(xùn)練前,隨機抽取了該年級部分學(xué)生進行跳遠測試,經(jīng)過一個月的強化訓(xùn)練后,再次測得這部分學(xué)生的成績,將兩次測得的成績制作成如圖所示的統(tǒng)計圖和不完整的統(tǒng)計表

訓(xùn)練后學(xué)生成績統(tǒng)計表

成績/分?jǐn)?shù)

6

7

8

9

10

人數(shù)/

1

3

8

5

n

根據(jù)以上信息回答下列問題

1)訓(xùn)練后學(xué)生成績統(tǒng)計表中n= ,并補充完成下表:

平均分

中位數(shù)

眾數(shù)

訓(xùn)練前

7.5

8

訓(xùn)練后

8

2)若跳遠成績9分及以上為優(yōu)秀,估計該校九年級學(xué)生訓(xùn)練后比訓(xùn)練前達到優(yōu)秀的人數(shù)增加了多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在矩形ABCD中,點FAD中點,EAB邊上一點,連接CE、EF、CF,EF平分∠AEC.

(1)如圖1,求證:CF⊥EF;

(2)如圖2,延長CE、DA交于點K, 過點FFGABCE于點G若,點HFG上一點,連接CH,若∠CHG=BCE, 求證:CH=FK;

(3)如圖3, 過點HHN⊥CHAB于點N,EN=11,FH-GH=1,GK.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,E,FBD所在直線上的兩點.若AE=EAF=135°,則以下結(jié)論正確的是(  )

A. DE=1 B. tanAFO= C. AF= D. 四邊形AFCE的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AB是⊙O的直徑,弦CDABH,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AGCDK

1)如圖1,求證:KE=GE;

2)如圖2,連接CABG,若∠FGB=ACH,求證:CAFE;

3)如圖3,在(2)的條件下,連接CGAB于點N,若sinE=,AK=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,又的三等分點.

1)求證;

2)證明:

3)若點為線段上一動點,連接則使線段的長度為整數(shù)的點的個數(shù)________.(直接寫答案無需說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知以RtABC的邊AB為直徑作ABC的外接圓⊙O,B的平分線BEACD,交⊙OE,過EEFACBA的延長線于F.

(1)求證:EF是⊙O切線;

(2)若AB=15,EF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,AB=AC.D,E是斜邊BC上兩點,且DAE=45°,將ADC繞點A順時針旋轉(zhuǎn)90°后,得到AFB,連接EF,下列結(jié)論:

AED≌△AEF;

ABE∽△ACD;

③BE+DC=DE;

④BE2+DC2=DE2

其中正確的是( )

A.②④ B.①④ C.②③ D.①③

查看答案和解析>>

同步練習(xí)冊答案