【題目】如圖,已知△ABC中,∠B=90 ,AB=16cmBC=12cm,P、Q是△ABC邊上的兩個動點,其中點P從點A開始沿A→B方向運動,且速度為每秒1cm,點Q從點B開始沿B→C→A方向運動,且速度為每秒2cm,它們同時出發(fā),設出發(fā)的時間為t秒.

1)出發(fā)2秒后,求PQ的長;

2)當點Q在邊BC上運動時,出發(fā)幾秒鐘后,△PQB能形成等腰三角形?

3)當點Q在邊CA上運動時,求能使△BCQ成為等腰三角形的運動時間.

【答案】1;(2;(3)當t11秒或12秒或13.2秒時,△BCQ為等腰三角形

【解析】

1)根據(jù)點PQ的運動速度求出AP,再求出BPBQ,用勾股定理求得PQ即可;

2)設出發(fā)t秒鐘后,PQB能形成等腰三角形,則BP=BQ,由BQ=2t,BP=8-t,列式求得t即可;

3)當點Q在邊CA上運動時,能使BCQ成為等腰三角形的運動時間有三種情況:①當CQ=BQ時,則∠C=CBQ,可證明∠A=ABQ,則BQ=AQ,則CQ=AQ,從而求得t;②當CQ=BC時,則BC+CQ=24,易求得t;③當BC=BQ時,過B點作BEAC于點E,則求出BECE,即可得出t

1)當t=2BQ=2×2=4 cm,BP=AB-AP=16-2×1=14 cm ,∠B=90°,

PQ= = cm

(2)依題意得: BQ=2t ,BP=16-t

2t =16-t 解得:t=

即出發(fā)秒鐘后,PQB能形成等腰三角形;

(3) ①當CQ=BQ(如下圖),則∠C=CBQ,

∵∠ABC=90°

∴∠CBQ+ABQ=90°

A+C=90°

∴∠A=ABQ

BQ=AQ

CQ=AQ=10

BC+CQ=22

t=22÷2=11

②當CQ=BC時(如圖2),則BC+CQ=24

t=24÷2=12

③當BC=BQ時(如圖3),過B點作BEAC于點E,

BE= ,

CE=,

CQ=2CE=14.4,

所以BC+CQ=26.4,

t=26.4÷2=13.2

由上可知,當t11秒或12秒或13.2秒時,BCQ為等腰三角形

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮進行百米賽跑,小明比小亮跑得快,如果兩人同時起跑,小明肯定贏,現(xiàn)在小明讓小亮先跑若干米,圖中分別表示兩人的路程與小明追趕時間的關系.

1)哪條線表示小明的路程與時間之間的關系?

2)小明讓小亮先跑了多少米?

3)誰將贏得這場比賽?

4對應的一次函數(shù)表達式中,一次項系數(shù)是多少?它的實際意義是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,△ABC和△DEF相似,則關于位似中心與相似比敘述正確的是( 。

A. 位似中心是點B,相似比是2:1 B. 位似中心是點D,相似比是2:1

C. 位似中心在點G,H之間,相似比為2:1 D. 位似中心在點G,H之間,相似比為1:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由邊長相等的小正方形組成的網(wǎng)格,以下各圖中點A、B、C、D都在格點上.

(1)在圖1中,PC:PB=   ;

(2)利用網(wǎng)格和無刻度的直尺作圖,保留痕跡,不寫作法.

①如圖2,在AB上找點P,使得AP:PB=1:3;

②如圖3,在BC上找點P,使得APB∽△DPC;

③如圖4,在ABC中內找一點P,連接PA、PB、PC,將ABC分成面積相等的三部分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形A'B'C'D'在矩形ABCD的內部,ABA'B',ADA'D',且AD=12,AB=6,設ABA'B'、BCB'C'、CDC'D'、DAD'A'之間的距離分別為a,b,c,d,

(1)a=b=c=d=2,矩形A'B'C'D'∽矩形ABCD嗎,為什么?

(2)若矩形A'B'C'D'∽矩形ABCD,a,b,c,d應滿足什么等量關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,王老師出示了如下框中的題目.

小明與同桌小聰討論后,進行了如下解答:

1)特殊情況探索結論:在等邊三角形ABC中,當點EAB的中點時,點DCB點延長線上,且ED=EC;如圖1,確定線段AEDB的大小關系.請你直接寫出結論 ;

2)特例啟發(fā),解答題目

王老師給出的題目中,AEDB的大小關系是: .理由如下:

如圖2,過點EEFBC,交AC于點F,(請你完成以下解答過程)

3)拓展結論,設計新題

ABC中,AB=BC=AC=1;點EAB的延長線上,AE=2;點DCB的延長線上,ED=EC,如圖3,請直接寫CD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,AC=BC,C=90,AD是△ABC的角平分線,DEAB,垂足為E.求證:AB=AC+CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=50°,P為△ABC內一點,過點P的直線MN分別交AB、BC于點M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為____________°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示:某一蓄水池的排水速度與排水時間之間的函數(shù)關系圖象

根據(jù)圖象求該蓄水池的蓄水量.

若要用不超過小時的時間排完蓄水池內的水,那么每小時至少應排水多少?

如果每小時排水,則排完蓄水池中的水需要多長時間?

查看答案和解析>>

同步練習冊答案