【題目】如圖(1),已知:在中,,,直線經(jīng)過點(diǎn)直線,直線,垂足分別為點(diǎn)、.證明:

2)如圖(2),將(1)中的條件改為:在中,,、三點(diǎn)都在直線上,并且有.請直接寫出線段、之間的數(shù)量關(guān)系.

3)拓展與應(yīng)用:如圖(3),、三點(diǎn)所在直線上的兩動(dòng)點(diǎn)、、三點(diǎn)互不重合),點(diǎn)平分線上的一點(diǎn),且均為等邊三角形,連接,若,試證明

【答案】1)證明見解析;(2;(3)證明見解析.

【解析】

1)由“一線三垂直”模型,得,進(jìn)而,即可得到結(jié)論;

2)由“一線三等角”模型,得,進(jìn)而,即可得到結(jié)論;

3)由等邊三角形锝性質(zhì)結(jié)合條件,得,從而得,進(jìn)而得,,結(jié)合條件,易證,即可得到結(jié)論.

1,,

,

,

,

中,

,

,

,

2,理由如下:

,

,

,

,

3均為等邊三角形,

,,

,

,

中,

,

,

,

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD,AEFG都是正方形,E、G分別在AB、AD邊上,已知AB=4

1)求正方形ABCD的周長;

2)將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θθ90°)時(shí),如圖2,求證:BE=DG

3)將正方形AEFG繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長BEDG于點(diǎn)H,設(shè)BHAD的交點(diǎn)為M

求證:BH⊥DG;

當(dāng)AE=時(shí),求線段BH的長(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等邊三角形ABC內(nèi)的一點(diǎn),且PA3,PB4,PC5,以BC為邊在ABC外作BQC≌△BPA,連接PQ,則以下結(jié)論中正確有_____(填序號)①△BPQ是等邊三角形②△PCQ是直角三角形③∠APB150° ④∠APC120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在 Rt△ABC 中,∠A=90°,AB=AC,點(diǎn) D、E 分別在邊 AB、AC 上,AD=AE,連接DC,點(diǎn) M、P、N 分別為 DE、DC、BC 的中點(diǎn),

(1)觀察猜想:如圖 1 中,△PMN 三角形;

(2)探究證明:把△ADE 繞點(diǎn) A 逆時(shí)針方向旋轉(zhuǎn)到圖 2 的位置,連接 MN,BD, CE.判斷△PMN 的形狀,并說明理由;

(3)拓展延伸:將△ADE 繞點(diǎn) A 在平面內(nèi)自由旋轉(zhuǎn),若 AD=4,AB=10,請求△PMN 面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).

(1)請求出拋物線的解析式;

(2)當(dāng)0<x<4時(shí),請直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將長方形紙片 ABCD 沿過點(diǎn) B 的直線折疊,使點(diǎn) A 落在 BC 邊上的點(diǎn) F 處, 折痕為 BE(如圖③;再沿過點(diǎn) E 的直線折疊,使點(diǎn) D 落在 BE 上的點(diǎn)處 D′,折痕為 EG(如圖④;再展平紙片(如圖⑤,則圖⑤中∠α=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)風(fēng)力資源豐富,為了實(shí)現(xiàn)低碳環(huán)保,該鄉(xiāng)鎮(zhèn)決定開展風(fēng)力發(fā)電,打算購買10臺(tái)風(fēng)力發(fā)電機(jī)組.現(xiàn)有A,B兩種型號機(jī)組,其中A型機(jī)組價(jià)格為12萬元/臺(tái),月均發(fā)電量為2.4kwh;B型機(jī)組價(jià)格為10萬元/臺(tái),月均發(fā)電量為2kwh.經(jīng)預(yù)算該鄉(xiāng)鎮(zhèn)用于購買風(fēng)力發(fā)電機(jī)組的資金不高于105萬元.

1)請你為該鄉(xiāng)鎮(zhèn)設(shè)計(jì)幾種購買方案;

2)如果該鄉(xiāng)鎮(zhèn)用電量不低于20.4kwh/月,為了節(jié)省資金,應(yīng)選擇那種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,下列結(jié)論:①9a﹣3b+c=0;4a﹣2b+c>0;③方程ax2+bx+c4=0有兩個(gè)相等的實(shí)數(shù)根;④方程ax﹣1)2+bx﹣1)+c=0的兩根是x1=﹣2,x2=2.其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中,,,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)MN再分別以MN為圓心,大于的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于點(diǎn)D,則下列說法中正確的有________

AD的平分線;②;③點(diǎn)DAB的中垂線上;④

查看答案和解析>>

同步練習(xí)冊答案