【題目】分解因式a2﹣9的結(jié)果是

【答案】(a+3)(a﹣3)
【解析】解:a2﹣9=(a+3)(a﹣3).
所以答案是:(a+3)(a﹣3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)P在x軸上,若以P,O,A為頂點(diǎn)的三角形是等腰三角形,則滿足條件的點(diǎn)P共有個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,頂點(diǎn)為(1,4)的拋物線與直線交于點(diǎn)A(2,2),直線軸交于點(diǎn)B與軸交于點(diǎn)C

(1)的值及拋物線的解析式

(2)P為拋物線上的點(diǎn),點(diǎn)P關(guān)于直線AB的對稱軸點(diǎn)在軸上,求點(diǎn)P的坐標(biāo)

(3)點(diǎn)D軸上方拋物線上的一點(diǎn),點(diǎn)E為軸上一點(diǎn),以A B、ED為頂點(diǎn)的四邊為平行四邊形時,直接寫出點(diǎn)E的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知同一平面內(nèi),∠AOB=90゜,∠AOC=60゜.

(1)填空:∠COB=
(2)如OD平分∠BOC,OE平分∠AOC,直接寫出∠DOE的度數(shù)為
(3)試問在(2)的條件下,如果將題目中∠AOC=60゜改成∠AOC=2α(α<45゜),其他條件不變,你能求出∠DOE的度數(shù)嗎?若能,請你寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙中的△ABC經(jīng)過變換得到△DEF,正確的變換是( )

A.把△ABC向右平移6格
B.把△ABC向右平移4格,再向上平移1格
C.把△ABC繞著點(diǎn)A順時針旋轉(zhuǎn)90°,再向右平移6格
D.把△ABC繞著點(diǎn)A逆時針旋轉(zhuǎn)90°,再向右平移6格

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了更好治理河流水質(zhì),保護(hù)環(huán)境,某市治污公司決定購買10臺污水處理設(shè)備,現(xiàn)有A,B兩種型號的設(shè)備,其中每臺的價格,月處理污水量如表:

A型

B型

價格(萬元/臺)

a

b

處理污水量(噸/月)

220

180

經(jīng)調(diào)查:購買一臺A型設(shè)備比購買一臺B型設(shè)備多3萬元,購買2臺A型設(shè)備比購買3臺B型設(shè)備少3萬元.
(1)求a,b的值;
(2)經(jīng)預(yù)算:市治污公司購買污水處理設(shè)備的資金不超過100萬元,你認(rèn)為該公司有哪幾種購買方案;
(3)在(2)問的條件下,若每月要求處理的污水量不低于1880噸,為了節(jié)約資金,請你為治污公司設(shè)計(jì)一種最省錢的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,A,E為格點(diǎn),B,F為小正方形邊的中點(diǎn),CAE,BF的延長線的交點(diǎn).

(1)AE的長等于________;

(2)若點(diǎn)P在線段AC上,點(diǎn)Q在線段BC上,且滿足AP = PQ = QB,請?jiān)谌鐖D所示的網(wǎng)格中,用無刻度的直尺,畫出線段PQ,并簡要說明點(diǎn)P,Q的位置是如何找到的(不要求證明)________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:2x﹣9=5x+3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線MN與直線AB、CD分別交于點(diǎn)E、F,∠1與∠2互補(bǔ).
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點(diǎn)P,EP與CD交于點(diǎn)G,點(diǎn)H是MN上一點(diǎn),且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點(diǎn)使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.

查看答案和解析>>

同步練習(xí)冊答案