【題目】如圖,△ABC中,∠ACB=90°,AB=2,BC=AC,D為AB的中點,E為BC上一點,將△BDE沿DE翻折,得到△FDE,EF交AC于點G,則△ECG的周長是___________

【答案】

【解析】

連接CE.根據(jù)“直角三角形斜邊上的中線等于斜邊的一半”、等腰三角形的性質(zhì)以及折疊的性質(zhì)推知EG+CG=EG+GF=EF=BE,

解:(1)如圖,連接CD、CF.

∵Rt△ABC中,∠ACB=90°,AC=BC,DAB邊的中點,
∴BD=CD=1.BC= ,
由翻折可知BD=DF,
∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,
∴∠DCF=∠DFC,
∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,
∴GC=GF,
∴EG+CG=EG+GF=EF=BE,

∴△ECG的周長=EG+GC+CE=BE+EC=BC=,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式變形中,正確的是(
A.x2?x3=x6
B. =|x|
C.(x2 )÷x=x﹣1
D.x2﹣x+1=(x﹣ 2+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,對于一個圖形,通過兩種不同的方法計算它的面積,可以得到一個等式.例

如圖1可以得到.請解答下列問題:

(1)根據(jù)圖2,完成數(shù)學(xué)等式: = ;

(2)觀察圖3,寫出圖3中所表示的等式:        =____________.

(3)若、、,且,請利用(2)所得的結(jié)論求:的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象的頂點在原點O,經(jīng)過點A(1, );點F(0,1)在y軸上.直線y=﹣1與y軸交于點H.

(1)求二次函數(shù)的解析式;
(2)點P是(1)中圖象上的點,過點P作x軸的垂線與直線y=﹣1交于點M,求證:FM平分∠OFP;
(3)當△FPM是等邊三角形時,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖1,在平面直角坐標系中,點A,B,C都在坐標軸上,且OA=OB=OC,ABC的面積為9,點PC點出發(fā)沿y軸負方向以1個單位/秒的速度向下運動,連接PA,PB,D(﹣m,﹣m)為AC上的點(m>0)

(1)試分別求出A,B,C三點的坐標;

(2)設(shè)點P運動的時間為t秒,問:當t為何值時,DPDB垂直且相等?請說明理由;

(3)如圖2,若PA=AB,在第四象限內(nèi)有一動點Q,連QA,QB,QP,且∠PQA=60°,當Q在第四象限內(nèi)運動時,求∠APQ與∠PBQ的度數(shù)和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,SABCD=24,AE平分∠BAC,交BC于E,沿AE將△ABE折疊,點B的對應(yīng)點為F,連接EF并延長交AD于G,EG將ABCD分為面積相等的兩部分.則SABE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從甲、乙兩名射擊運動員中選拔一名參加比賽,對這兩名運動員進行測試,他們10次射擊命中的環(huán)數(shù)如下:

7

9

8

6

10

7

9

8

6

10

7

8

9

8

8

6

8

9

7

10

根據(jù)測試成績,你認為選擇哪一名運動員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE,AB=AD,AC=AE.且E,F(xiàn),C,D在同一直線上.

(1)求證:△ABC≌△ADE;

(2)若∠B=30°,∠BAC=100°,點F是CE的中點,連結(jié)AF,求∠FAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米的A點處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.

(1)沉船C是否在“蛟龍”號深潛極限范圍內(nèi)?并說明理由;
(2)由于海流原因,“蛟龍”號需在B點處馬上上浮,若平均垂直上浮速度為2000米/時,求“蛟龍”號上浮回到海面的時間.(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

同步練習(xí)冊答案