【題目】閱讀下列材料,并完成相應(yīng)的任務(wù).
古希臘的幾何學(xué)家海倫在他的著作《度量論》一書中給出了利用三角形三邊之長求面積的公式﹣﹣﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5
∴=6
∴S===6
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
根據(jù)上述材料,解答下列問題:
如圖,在△ABC中,BC=7,AC=8,AB=9
(1)用海倫公式求△ABC的面積;
(2)如圖,AD、BE為△ABC的兩條角平分線,它們的交點為I,求△ABI的面積.
【答案】(1);(2).
【解析】
(1)按照材料給出的公式,將數(shù)值代入即可求出面積;
(2)過點I作IF⊥AB、IG⊥AC、IH⊥BC,垂足分別為點F、G、H,利用角平分線的性質(zhì)可知IF=IH=IG,利用第(1)問中求出的面積求出IF,最后利用三角形面積公式求△ABI的面積即可.
解:(1)∵BC=7,AC=8,AB=9,
∴
答:△ABC面積是;
(2)如圖,過點I作IF⊥AB、IG⊥AC、IH⊥BC,垂足分別為點F、G、H,
∵AD、BE分別為△ABC的角平分線,
∴IF=IH=IG,
∵S△ABC=S△ABI+S△ACI+S△BCI,
∴(9IF+8IF+7IF)=
解得IF=
故S△ABI=ABFI=×9×=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(探究)用“>”、“<”、“≤”、“≥”或“=”填空,并探究規(guī)律:
(1)4+5 2;
(2)3+ 2;
(3)1+ 2;
(4)a+1 2(a>0).
(發(fā)現(xiàn))用一句話概括你發(fā)現(xiàn)的規(guī)律: ;
(表達(dá))用符號語言寫出你發(fā)現(xiàn)的規(guī)律并加以證明;
(應(yīng)用)若a>0,求a+的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師要求在一個已知的中,利用尺規(guī)作出一個菱形.
(1)小明的作法如下:如圖1,連接,作的垂直平分線分別交,于點,,連接,.請你判斷小明的作法是否正確;若正確,說明理由;若不正確,請你作出符合條件的菱形;
(2)小亮的作法:如圖2,分別作,的平分線,,分別交,于點,,連接,則四邊形是菱形.請你直接判斷小亮的作法是否正確.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AD為直徑的半圓O經(jīng)過Rt△ABC斜邊AB的兩個端點,交直角邊AC于點E;B、E是半圓弧的三等分點,的長為,則圖中陰影部分的面積為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D,E分別在邊AC,AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市促銷活動,將A,B,C三種水果采用甲、乙、丙三種方式搭配裝進(jìn)禮盒進(jìn)行銷售.每盒的總成本為盒中A,B,C三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝A,B,C三種水果6kg,3kg,1kg;乙種方式每盒分別裝A,B,C三種水果2kg,6kg,2kg.甲每盒的總成本是每千克A水果成本的12.5倍,每盒甲的銷售利潤率為20%;每盒甲比每盒乙的售價低25%;每盒丙在成本上提高40%標(biāo)價后打八折出售,獲利為每千克A水果成本的1.2倍.當(dāng)銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為2:2:5時,則銷售總利潤率為_____.(利潤率=利潤÷成本×100%)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠B=60°,BC=2.將△ABC繞點C順時針旋轉(zhuǎn),得到△A′B′C,連接AB′,且A,B′,A′在同一條直線上,則AA′=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉(zhuǎn)得到△A′B′C,M是BC的中點,P是A′B′的中點,連接PM,若BC=2,∠BAC=30°,則線段PM的最大值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com