【題目】在平面直角坐標系中,點A的坐標是(2,1),將點A繞原點O旋轉180°得到點A,則點A的坐標是(

A.(-1,-2B.1,-2C.(-2,-1D.2,-1

【答案】C

【解析】

根據(jù)中心旋轉的性質解決問題即可.

解:由題意點A與點A′關于原點對稱,
A2,1),
A′-2-1),
故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(3,0),B(0,3)兩點

(1)求此拋物線的解析式和直線AB的解析式;

(2)如圖①,動點E從O點出發(fā),沿著OA方向以1個單位/秒的速度向終點A勻速運動,同時,動點F從A點出發(fā),沿著AB方向以個單位/秒的速度向終點B勻速運動,當E,F(xiàn)中任意一點到達終點時另一點也隨之停止運動,連接EF,設運動時間為t秒,當t為何值時,△AEF為直角三角形?

(3)如圖②,取一根橡皮筋,兩端點分別固定在A,B處,用鉛筆拉著這根橡皮筋使筆尖P在直線AB上方的拋物線上移動,動點P與A,B兩點構成無數(shù)個三角形,在這些三角形中是否存在一個面積最大的三角形?如果存在,求出最大面積,并指出此時點P的坐標;如果不存在,請簡要說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的對話。

小紅:“售貨員,我要買些梨。”

售貨員說:“小紅,你上次買的那種梨賣完了,我們還沒來得及進貨,我建議你這次買些新進的蘋果,價格比梨貴一點,不過這批蘋果的味道挺好喲!”

小紅:“好,這次和上次一樣,也花30元。”

對照前后兩次的電腦小票,小紅發(fā)現(xiàn),每千克蘋果的單價是梨的1.5倍,買的蘋果的重量比梨輕2.5Kg。

試根據(jù)上面的對話和小紅的發(fā)現(xiàn),分別求出蘋果和梨的單價。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC

(1)判斷直線l與⊙O的位置關系,并說明理由;

(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;

(3)在(2)的條件下,若DE=4,DF=3,求AF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個三角形三個內角度數(shù)的比為235,那么這個三角形是(

A.直角三角形B.銳角三角形C.鈍角三角形D.不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC 上運動,以AD為折痕ABD折疊得到ABD,AB與邊BC交于點E.若∠BED=90°,則BD的長是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果|a﹣1|+(b+2)2=0,則(a+b)2016的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,二次函數(shù)的圖像過點 A (3,0),B (0,4)兩點,動點 P A 出發(fā),在線段 AB 上沿 A B 的方向以每秒 2 個單位長度的速度運動,過點P PDy 于點 D ,交拋物線于點 C 設運動時間為 t (秒)

1)求二次函數(shù)的表達式;

(2)連接 BC ,當t時,求BCP的面積;

(3)如圖 2,動點 P A 出發(fā)時,動點 Q 同時從 O 出發(fā),在線段 OA 上沿 OA 的方向以 1個單位長度的速度運動,當點 P B 重合時,P 、 Q 兩點同時停止運動,連接 DQ 、 PQ ,將DPQ沿直線 PC 折疊到 DPE 在運動過程中,設 DPE OAB重合部分的面積為 S ,直接寫出 S t 的函數(shù)關系式及 t 的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點E是邊AB上的動點,點F是射線CD上一點,射線ED和射線AF交于點G,且∠AGE=∠DAB

(1)求線段CD的長;

(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;

(3)如果點F在邊CD上(不與點C、D重合),設AE=x,DF=y,求y關于x的函數(shù)解析式,并寫出x的取值范圍

查看答案和解析>>

同步練習冊答案