【題目】某種正方形合金板材的成本y()與它的面積成正比,設(shè)邊長為xcm.當(dāng)x3時(shí),y18,那么當(dāng)成本為72元時(shí),邊長為(

A. 6cmB. 12cmC. 24cmD. 36cm

【答案】A

【解析】

設(shè)yx之間的函數(shù)關(guān)系式為y=kx2,由待定系數(shù)法就可以求出解析式,當(dāng)y=72時(shí)代入函數(shù)解析式就可以求出結(jié)論.

解:設(shè)yx之間的函數(shù)關(guān)系式為ykx2,由題意,得

189k,

解得:k2

y2x2,

當(dāng)y72時(shí),722x2,

x6

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一根木條固定在墻上只用了兩個(gè)釘子,這樣做的依據(jù)是_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】記M1=﹣2,M2=(﹣2)×(﹣2),M3=(﹣2)×(﹣2)×(﹣2),…,Mn=
(1)填空:M5= , M50 是一個(gè)數(shù)(填“正”或“負(fù)”)
(2)計(jì)算:①2M6+M7;②4M7+2M8;
(3)直接寫出2016Mn+1008Mn+1的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD是高,在線段DC上取一點(diǎn)E,使DE=BD,已知AB+BD=DC. 求證:E點(diǎn)在線段AC的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有A,B,C三個(gè)居民小區(qū)的位置成三角形,現(xiàn)決定在三個(gè)小區(qū)之間修建一個(gè)購物超市,使超市到三個(gè)小區(qū)的距離相等,則超市應(yīng)建在(

A.在AC,BC兩邊高線的交點(diǎn)處
B.在AC,BC兩邊中線的交點(diǎn)處
C.在AC,BC兩邊垂直平分線的交點(diǎn)處
D.在∠A,∠B兩內(nèi)角平分線的交點(diǎn)處

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,點(diǎn)B表示的數(shù)為﹣4,C為線段AB的中點(diǎn),動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動時(shí)間為t(t>0)秒.

(1)點(diǎn)C表示的數(shù)是
(2)當(dāng)t=秒時(shí),點(diǎn)P到達(dá)點(diǎn)A處;
(3)點(diǎn)P表示的數(shù)是(用含字母t的代數(shù)式表示);
(4)當(dāng)t=秒時(shí),線段PC的長為2個(gè)單位長度;
(5)若動點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動,那么,當(dāng)t=秒時(shí),PQ的長為1個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)直角三角形的斜邊長為8,內(nèi)切圓半徑為1,則這個(gè)三角形的周長等于 ( )

A. 21 B. 20 C. 19 D. 18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】化簡求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,三角形ABC的面積為1cm2 . AP垂直∠B的平分線BP于點(diǎn)P.則三角形PBC的面積是

查看答案和解析>>

同步練習(xí)冊答案