閱讀下列因式分解的過程,再回答所提出的問題:

1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]

                  =(1+x)2[1+x]

                  =(1+x)3

(1)上述分解因式的方法是               法,共應用了         次.

(2)若分解1+xx(x+1)+x(x+1)2+…+x(x+1)2010,則需要應用上述方法       次,分解因式后的結(jié)果是        .

(3)請用以上的方法分解因式:1+xx(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)),必須有簡要的過程。

(3)解:原式=(1+x)[1+x+x(1+x)…x(1+x)(n-1)]

     =(1+x)2[1+x+x(1+x)…x(1+x)(n-2)]

              …

       = (1+x)n

 (1) 提取公因式   3    (2) 2011  (1+x)2011

(3)解:原式=(1+x)[1+x+x(1+x)…x(1+x)(n-1)]

     =(1+x)2[1+x+x(1+x)…x(1+x)(n-2)]

              …

       = (1+x)n

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

24、先閱讀下列因式分解的過程,再回答所提出的問題:
例1:1+ax+ax(1+ax)=(1+ax)(1+ax)
=(1+ax)2;
例2:1+ax+ax(1+ax)+ax(1+ax)2=(1+ax)(1+ax)+ax(1+ax)2
=(1+ax)2+ax(1+ax)2
=(1+ax)2(1+ax)
=(1+ax)3
(1)分解因式:1+ax+ax(1+ax)+ax(1+ax)2+…+ax(1+ax)n=
(1+ax)n+1
;
(2)分解因式:x-1-x(x-1)+x(x-1)2-x(x-1)3+…-x(x-1)2003+x(x-1)2004
(答題要求:請將第(1)問的答案填寫在題中的橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、閱讀下列因式分解的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是
提取公因式
,共應用了
2
次.
(2)請用上述方法分解1+x+x(x+1)+x(x+1)2+…+x(x+1)5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

29、閱讀下列因式分解的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是
提公因式法
,共應用了
2
次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2004,則需應用上述方法
2004
次,結(jié)果是
(1+x)2005

(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列因式分解的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)=(1+x)3
(1)上述因式分解得方法是
提取公因式
提取公因式
法,共應用了
2
2
次,
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2012,則需要應用上述方法
2012
2012
次,分解因式后的結(jié)果是
(1+x)2013
(1+x)2013
.(3)請用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n,(其中n為正整數(shù)),必須有具體過程.
解:1+x+x(x+1)+x(x+1)2+…+x(x+1)n
=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

閱讀下列因式分解的過程,再回答所提出的問題:
1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]
=(1+x)2[1+x]
=(1+x)3
(1)上述分解因式的方法是
提公因式
提公因式
法,共應用了
2
2
次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,則需要應用上述方法
2010
2010
次,分解因式后的結(jié)果是
(x+1)2011
(x+1)2011

查看答案和解析>>

同步練習冊答案