精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,AE∥CD,CE∥AB,連接DE交AC于點O.

(1)證明:四邊形ADCE為菱形.

(2)BC=6,AB=10,求菱形ADCE的面積.

【答案】(1)見解析;(2)S菱形ADCE=24.

【解析】

(1)先證明四邊形ADCE是平行四邊形,再由直角三角形斜邊上的中線性質得出CD=

AB=AD,即可得出四邊形ADCE為菱形,(2)利用菱形的性質、勾股定理求得菱形ADCE的對角線的長度,然后根據菱形的面積=DEAC解答即可.

(1)∵在RtABC,ACB=90°,DAB中點,

CDABAD,

又∵AECD,CEAB,

∴四邊形ADCE是平行四邊形,

∴平行四邊形ADCE是菱形,

(2)在RtABC,AC=8.

∵平行四邊形ADCE是菱形,

CO=OA,

又∵BD=DA,

DO是△ABC的中位線,

BC=2DO,

又∵DE=2DO,

BCDE=6,

S菱形ADCE=24.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】定義:

數學活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱三角形為智慧三角形.

理解:

如圖,已知上兩點,請在圓上找出滿足條件的點,使智慧三角形(畫出點的位置,保留作圖痕跡);

如圖,在正方形中,的中點,上一點,且,試判斷是否為智慧三角形,并說明理由;

運用:

如圖,在平面直角坐標系中,的半徑為,點是直線上的一點,若在上存在一點,使得智慧三角形,當其面積取得最小值時,直接寫出此時點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀材料:

材料1、若一元二次方程ax2+bx+c=0(a≠0)的兩根為x1,x2,則x1+x2=,x1x2=

材料2、已知實數m、n滿足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.

解:由題知m、n是方程x2﹣x﹣1=0的兩個不相等的實數根,根據材料1

m+n=1,mn=﹣1

根據上述材料解決下面問題;

(1)一元二次方程2x2+3x﹣1=0的兩根為x1、x2,則x1+x2=   ,x1x2=   

(2)已知實數m、n滿足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.

(3)已知實數p、q滿足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,有下列結論:①a,b同號;②當x=1和x=3時,函數值相等;③4a+b=0;④當﹣1<x<5時,y<0.其中正確的有( 。

A. ①② B. ②③ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為1的正方形,點E在AD邊上運動,且不與點A和點D重合,連結CE,過點C作CFCE交AB的延長線于點F,EF交BC于點G.

(1)求證:CDE≌△CBF;

(2)當DE=時,求CG的長;

(3)連結AG,在點E運動過程中,四邊形CEAG能否為平行四邊形?若能,求出此時DE的長;若不能,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某學校為了增強學生體質,決定開放以下球類活動項目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統計圖(如圖,圖),請回答下列問題:

1)這次被調查的學生共有多少人?

2)請你將條形統計圖補充完整;

3)若該校共有學生1900人,請你估計該校喜歡D項目的人數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數yax2+bx+ca≠0)的圖象如圖,下列結論中,正確結論的有( 。﹤

b2﹣4ac>0;abc>0;8a+c>0;9a+3b+c<0.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為積極響應市委政府“加快建設天藍水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內隨機抽取了部分居民,進行“我最喜歡的一種樹”的調查活動(每人限選其中一種樹),并將調查結果整理后,繪制成如圖兩個不完整的統計圖:

請根據所給信息解答以下問題:

(1)這次參與調查的居民人數為:   ;

(2)請將條形統計圖補充完整;

(3)請計算扇形統計圖中“楓樹”所在扇形的圓心角度數;

(4)已知該街道轄區(qū)內現有居民8萬人,請你估計這8萬人中最喜歡玉蘭樹的有多少人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數y=kx+b和函數y=ax+m的圖像如圖所示,求下列不等式(組)的解集

(1) kx+bax+m的解集是

(2)的解集是

(3)的解集是

(4)的解集是

查看答案和解析>>

同步練習冊答案