在實數(shù)范圍內(nèi)分解下列因式:
(1)x2-2;
(2)x4-9;
(3)3x2-5.
分析:(1)將2化為
2
的平方,再利用平方差公式計算;
(2)先將9化為32,再利用平方差公式計算;
(3)將3化為
3
的平方,5化為
5
的平方,解答即可.
解答:解:(1)x2-2=x2-(
2
)2=(x+
2
)(x-
2
)
;
(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+
3
)(x-
3
)
;
(3)3x2-5=(
3
x+
5
)(
3
x-
5
)
點評:本題考查了實數(shù)范圍內(nèi)分解因式,適當(dāng)轉(zhuǎn)化代數(shù)式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在實數(shù)范圍內(nèi)分解下列因式:
(1)y4-6y2+5;
(2)x2-11;
(3)a2-2
3
a+3;                  
(4)5x2-2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在實數(shù)范圍內(nèi)分解下列因式:
(1)x2-2;
(2)x4-9;
(3)3x2-5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在實數(shù)范圍內(nèi)分解下列因式:
(1)x2-2;
(2)x4-9;
(3)3x2-5.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:四川省期末題 題型:解答題

閱讀下列材料,并解答相應(yīng)的問題:
我們從前面的學(xué)習(xí)中知道:x2±2xy+y2=(x±y)2及x2-y2=(x+y)(x-y).于是我們在實數(shù)范圍內(nèi)分解二次三項式x2-6x+7時,可采用如下的方法:
(1)x2-6x+7=x2-6x+9-2
=(x-3)2-()2
=(x-3+)(x-3-)
(2)4y2+4y-3=4y2+4y+1-4
=(2y+1)2-4
=(2y+1+2)(2y+1-2)
=(2y+3)(2y-1)
請你仔細(xì)體會上述方法,并利用此法在實數(shù)范圍內(nèi)分解下列因式:
(1)x2+4x+3
(2)4x2-4x-5

查看答案和解析>>

同步練習(xí)冊答案