【題目】如圖,在四邊形ABCD中,對角線ACBD相交于點O,AOCOBODO,且∠ABC+ADC180°

1)求證:四邊形ABCD是矩形;

2)若∠ADF:∠FDC32,DFAC,求∠BDF的度數(shù).

【答案】1)見解析;(2)∠BDF18°.

【解析】

1)先證明四邊形ABCD是平行四邊形,求出∠ABC=90°,然后根據(jù)矩形的判定定理,即可得到結(jié)論;

2)求出∠FDC的度數(shù),根據(jù)三角形的內(nèi)角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度數(shù).

1)證明:∵AOCO,BODO,

∴四邊形ABCD是平行四邊形,

∴∠ABC=∠ADC,

∵∠ABC+ADC180°,

∴∠ABC=∠ADC90°,

∴四邊形ABCD是矩形;

2)解:∵∠ADC90°,∠ADF:∠FDC32,

∴∠FDC36°,

DFAC,

∴∠DCO90°﹣36°=54°,

∵四邊形ABCD是矩形,

COOD,

∴∠ODC=∠DCO54°,

∴∠BDF=∠ODC﹣∠FDC18°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,各內(nèi)角的平分線相交于點EF,G,H

1)求證:四邊形EFGH是矩形;

2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩個一元二次方程,其中,,,下列四個結(jié)論中錯誤的是(

A.如果方程有兩個不相等的實數(shù)根,那么方程也有兩個不相等的實數(shù)

B.如果4是方程的一個根,那么是方程的另一個根

C.如果方程有兩根符號相同,那么方程的兩符號也相同

D.如果方程和方程有一個相同的根,那么這個根必是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB2,BC4,對角線AC的垂直平分線分別交AD、BC于點E、F,連接CE,則DCE的面積為( 。

A. B. C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點D從點C出發(fā),以2cm/s的速度沿折線C→A→B向點B運動,同時,點E從點B出發(fā),以1cm/s的速度沿BC邊向點C運動,E到C時兩點同時停止運動。設(shè)點E運動的時間為ts().

(1)AB=__________cm, CE=__________cm;

(2)當△BDE是直角三角形時,求t的值;

(3)若四邊形CDEF是以CD、DE為一組鄰邊的平行四邊形,

①設(shè)平行四邊形CDEF的面積為Scm2,求S于t的關(guān)系式;

②是否存在某個時刻t,使CDEF為菱形?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點B,C分別是∠MAN的邊AMAN上的點,滿足ABBC,點P為射線的AB上的動點,點D為點B關(guān)于直線AC的對稱點,連接PDACE點,交BC于點F。

(1)在圖1中補全圖形;

(2)求證:∠ABE=∠EFC;

(3)當點P運動到滿足PDBE的位置時,在射線AC上取點Q,使得AEEQ,此時是否是一個定值,若是請直接寫出該定值,若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,ABC的三個頂點分別是A-2,0),B03),C30.

1)在所給的圖中,畫出這個平面直角坐標系;

2)點A經(jīng)過平移后對應(yīng)點為D3,-3),將ABC作同樣的平移得到DEF,點B的對應(yīng)點為點E,畫出平移后的DEF;

3)在(2)的條件下,點M在直線CD上,若DM=2CM,直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

第五次

第六次

平均成績

中位數(shù)

10

8

9

8

10

9

9

10

7

10

10

9

8

9.5

(1)完成表中填空① ;② ;

(2)請計算甲六次測試成績的方差;

(3)若乙六次測試成績方差為,你認為推薦誰參加比賽更合適,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解不等式21x)<53x

2)求不等式的正整數(shù)解

3)解不等式組

4)解不等式組,并把解集在數(shù)軸上表示出來.

查看答案和解析>>

同步練習冊答案