【題目】如圖直線l:y=kx+6與x軸、y軸分別交于點(diǎn)B、C兩點(diǎn),點(diǎn)B的坐標(biāo)是(﹣8,0),點(diǎn)A的坐標(biāo)為(﹣6,0).
(1)求k的值.
(2)若點(diǎn)P是直線l在第二象限內(nèi)一個動點(diǎn),當(dāng)點(diǎn)P運(yùn)動到什么位置時,△PAC的面積為3,求出此時直線AP的解析式.
(3)在x軸上是否存在一點(diǎn)M,使得△BCM為等腰三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
【答案】(1),(2)P(﹣4,3);y=x+9.(3)(﹣18,0),(﹣,0),(2,0)或(8,0),見解析.
【解析】
(1)由點(diǎn)B的坐標(biāo),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出k值;
(2)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)C的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(x,x+6),由S△PAC=S△BOC﹣S△BAP﹣S△AOC結(jié)合△PAC的面積為3,可得出關(guān)于x的一元一次方程,解之即可得出點(diǎn)P的坐標(biāo),再利用待定系數(shù)法即可求出此時直線AP的解析式;
(3)利用勾股定理求出BC的長度,分CB=CM,BC=BM,MB=MC三種情況考慮:①當(dāng)CB=CM時,由OM1=OB=8可得出點(diǎn)M1的坐標(biāo);②當(dāng)BC=BM時,由BM2=BM3=BC=10結(jié)合點(diǎn)B的坐標(biāo)可得出點(diǎn)M2,M3的坐標(biāo);③當(dāng)MB=MC時,設(shè)OM=t,則M4B=M4C=8﹣t,利用勾股定理可得出關(guān)于t的一元一次方程,解之即可得出點(diǎn)M4的坐標(biāo).綜上,此題得解.
(1)∵直線l:y=kx+6過點(diǎn)B(﹣8,0),
∴0=﹣8k+6,
∴k=.
(2)當(dāng)x=0時,y=x+6=6,
∴點(diǎn)C的坐標(biāo)為(0,6).
依照題意畫出圖形,如圖1所示,
設(shè)點(diǎn)P的坐標(biāo)為(x,x+6),
∴S△PAC=S△BOC﹣S△BAP﹣S△AOC,
=×8×6﹣×2(x+6)﹣×6×6,
=﹣x=3,
∴x=﹣4,
∴點(diǎn)P的坐標(biāo)為(﹣4,3).
設(shè)此時直線AP的解析式為y=ax+b(a≠0),
將A(﹣6,0),P(﹣4,3)代入y=ax+b,
得:,解得:,
∴當(dāng)點(diǎn)P的坐標(biāo)為(﹣4,3)時,△PAC的面積為3,此時直線AP的解析式為y=x+9.
(3)在Rt△BOC中,OB=8,OC=6,
∴BC==10.
分三種情況考慮(如圖2所示):
①當(dāng)CB=CM時,OM1=OB=8,
∴點(diǎn)M1的坐標(biāo)為(8,0);
②當(dāng)BC=BM時,BM2=BM3=BC=10,
∵點(diǎn)B的坐標(biāo)為(﹣8,0),
∴點(diǎn)M2的坐標(biāo)為(2,0),點(diǎn)M3的坐標(biāo)為(﹣18,0);
③當(dāng)MB=MC時,設(shè)OM=t,則M4B=M4C=8﹣t,
∴CM42=OM42+OC2,即(8﹣t)2=t2+62,
解得:t=,
∴點(diǎn)M4的坐標(biāo)為(﹣,0).
綜上所述:在x軸上存在一點(diǎn)M,使得△BCM為等腰三角形,點(diǎn)M的坐標(biāo)為(﹣18,0),(﹣,0),(2,0)或(8,0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點(diǎn)O的直線分別交AB,CD邊于點(diǎn)E,F(xiàn).
(1)求證:四邊形BEDF是平行四邊形;
(2)當(dāng)四邊形BEDF是菱形時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,AB=AC,點(diǎn)D、點(diǎn)O分別為BC、AC的中點(diǎn),AE//BC.
(1)如圖1,求證:四邊形ADCE是矩形;
(2)如圖2,若點(diǎn) F是 CE上一動點(diǎn),在不添加任何輔助線的情況下,請直接寫出與四邊形 ABDF 面積相等的三角形和四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在四邊形ABCD中,AD∥BC,AB∥DC,點(diǎn)E在BC延長線上,連接DE,∠A+∠E=180°.
(1)如圖1,求證:CD=DE;
(2)如圖2,過點(diǎn)C作BE的垂線,交AD于點(diǎn)F,請直接寫出BE、AF、DF 之間的數(shù)量關(guān)系_______________________;
(3)如圖3,在(2)的條件下,∠ABC的平分線,交CD于G,交CF于H,連接FG,若∠FGH=45°,DF=8,CH=9,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠一周計劃每日生產(chǎn)某產(chǎn)品100噸,由于工人實行輪休,每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表(以計劃量為標(biāo)準(zhǔn),增加的噸數(shù)記為正數(shù),減少的噸數(shù)記為負(fù)數(shù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增減/噸 | ﹣1 | +3 | ﹣2 | +4 | +7 | ﹣5 | ﹣10 |
(1)生產(chǎn)量最多的一天比生產(chǎn)量最少的一天多生產(chǎn)多少噸?
(2)本周總生產(chǎn)量是多少噸?比原計劃增加了還是減少了?增減數(shù)為多少噸?
(3)若本周總生產(chǎn)的產(chǎn)品全部由35輛貨車一次性裝載運(yùn)輸離開工廠,則平均每輛貨車大約需裝載多少噸?(結(jié)果精確到0.01噸)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點(diǎn),BE=BA,過E作EF⊥AB,F為垂足.下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正確的是( )
A.①②③B.①③④C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖1,圖2所提供的信息,解答下列問題:
(1)2007年海南省城鎮(zhèn)居民人均可支配收入為 元,比2006年增長 %;
(2)求2008年海南省城鎮(zhèn)居民人均可支配收入(精確到1元),并補(bǔ)全條形統(tǒng)計圖;
(3)根據(jù)圖1指出:2005﹣2008年海南省城鎮(zhèn)居民人均可支配收入逐年 (填“增加”或“減少”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(-2,0).點(diǎn)D在y軸上,連接AD并將它沿x軸向右平移至BC的位置,且點(diǎn)B坐標(biāo)為(4,0),連接CD,OD=AB.
(1)線段CD的長為 ,點(diǎn)C的坐標(biāo)為 ;
(2)如圖2,若點(diǎn)M從點(diǎn)B出發(fā),以1個單位長度/秒的速度沿著x軸向左運(yùn)動,同時點(diǎn)N從原點(diǎn)O出發(fā),以相同的速度沿折線OD→DC運(yùn)動(當(dāng)N到達(dá)點(diǎn)C時,兩點(diǎn)均停止運(yùn)動).假設(shè)運(yùn)動時間為t秒.
①t為何值時,MN∥y軸;
②求t為何值時,S△BCM=2S△ADN.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com