【題目】如圖,已知在正方形ABCD中,對角線ACBD相交于點O,OEABBC于點E.AD=8cm,則OE的長為( )

A. 3cm B. 4cm C. 6cm D. 8cm

【答案】B

【解析】

根據(jù)正方形性質可證得三角形OBC是等腰直角三角形,由OEAB,可證OE垂直平分BC,再證三角形OBE是等腰直角三角形,故OE=BE=4.

因為,在正方形ABCD中,對角線ACBD相交于點O,

所以,ACBD互相垂直平分,

所以,OB=OC,ABC=90o

所以,△OBC是等腰直角三角形,OBE=45o

又因為,OEAB

所以,OEBC

所以,OE垂直平分BC.

所以,△OBE是等腰直角三角形,

所以,OE=BE=BC=4.

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某班參加一次智力競賽,共a、b、c三題,每題或者得滿分或者得0分,其中題a滿分20分,題b、題c滿分均為25分.競賽結果,每個學生至少答對了一題,三題全答對的有1人,答對其中兩道題的有15人,答對題a的人數(shù)與答對題b的人數(shù)之和為29,答對題a的人數(shù)與答對題c的人數(shù)之和為25,答對題b的人數(shù)與答對題c的人數(shù)之和為20,在這個班的平均成績是__分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】菱形的邊長為,,分別是、的中點,、分別在上,且

求證:四邊形是平行四邊形;

當四邊形是菱形時,求的長;

當四邊形是矩形時,求此時點到點的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°,AC=AN,BC=BM,則∠MCN=( )

A. 30°B. 45°C. 60°D. 55°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在熱氣球A上看到橫跨河流兩岸的大橋BC,并測得B,C兩點的俯角分別為45°,36°.已知大橋BC與地面在同一水平面上,其長度為100m.請求出熱氣球離地面的高度(結果保留小數(shù)點后一位).參考數(shù)據(jù):tan36°≈0.73.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAB邊上一點,過點CCFABED的延長線于點F

1)求證:△BDE≌△CDF

2)當ADBCAE2,CF4時,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形是由大小、形狀相同的“小等邊三角形”按照一定的規(guī)律組成,其中第1幅圖中有3個小等邊三角形,第2幅圖中有8個小邊三角形,第3幅圖中有15個小等邊三角形,依此類推,則第10幅圖中有(  )個小等邊三角形.

A.63B.80C.99D.120

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是直角三角形,,,以點為旋轉中心,將旋轉到的位置,且使經(jīng)過點

的度數(shù),判斷的形狀;

求線段與線段的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】

(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是DCP的平分線上一點.若AMN=90°,求證:AM=MN.

下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.

證明:在邊AB上截取AE=MC,連ME.正方形ABCD中,B=BCD=90°,AB=BC.

∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=MAB=MAE.

(下面請你完成余下的證明過程)

(2)若將(1)中的正方形ABCD改為正三角形ABC(如圖2),N是ACP的平分線上一點,則當AMN=60°時,結論AM=MN是否還成立?請說明理由.

(3)若將(1)中的正方形ABCD改為邊形ABCD……X,請你作出猜想:當AMN= °時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)

查看答案和解析>>

同步練習冊答案